• Shortcuts : 'n' next unread feed - 'p' previous unread feed • Styles : 1 2

» Publishers, Monetize your RSS feeds with FeedShow:  More infos  (Show/Hide Ads)


Date: Sunday, 13 Apr 2014 17:02

Thorium-Concept-Car

From time to time there are conspiracy theorist and opportunist that try to attach the incredible to the credible. If not addressed the incredible can detract from a very credible message and from a very credible technology. Recently, there has been a lot of conjecture of the possibility of the Thorium Powered Car and Thorium Plasma batteries.

While the Thorium powered Cadillac car is wickedly cool looking……..

The Energy From Thorium Foundation does not, in even the remotest sense, support the basis of these technologies, if they are even legitimate technologies.

The concept of a thorium powered car has many, many, problems.

Here is a very good video that thoroughly examines the problems with the thorium car. (Warning adult language used)

 

The Thorium powered Cadillac concept car is not even the first nuclear powered concept car by a big three auto manufacturer.

Thorium Plasma Batteries have the most dubious distinction of having everyone supposedly involved with this project being conveniently dead. No plans can be found for these batteries and none of the assertions made by the conspiracy theorists can be verified. From what I can tell is that the proof that is used in these articles are just interrelated links between conspiracy theory driven paranoia websites. I can find no credible websites on this supposed technology and many people are being duped into believing this technology is actually real.

http://www.abovetopsecret.com/forum/thread835973/pg1
http://www.shanghaiexpat.com/phpbbforum/what-do-you-think-about-thorium-plasma-battery-technology-t150333-30.html
http://peakoil.com/alternative-energy/thorium-plasma-batteries-the-disruptive-oil-giant-killer-technology
http://www.rexresearch.com/articles2/thorium.htm
http://www.greenoptions.com/t/4190/inventor-creates-plasma-battery-that-lives-longer-than-people-using-thorium
http://open.salon.com/blog/green_energy_reports/2011/07/01/thorium_plasma_battery_technology_-_wrongly_top_secret
http://www.plugincars.com/where-can-i-buy-thorium-plasma-battery-or-plans-build-one.html
http://exposingcensorship.blogspot.com/2012/04/murdered-government-agent-linked-to.html
http://www.energeticforum.com/renewable-energy/10974-nuclear-thorium-plasma-battery-victim-technology-suppression.html
http://www.libertariannews.org/2011/08/24/8-grams-of-thorium-could-replace-gasoline-in-cars/
http://www.godlikeproductions.com/forum1/message1823699/pg1
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=24&ved=0CIwBEBYwDTgK&url=http%3A%2F%2Fwww.electricforum.com%2Fcars%2Fattachments%2Fgeneral-electric-vehicle-discussion%2F978d1333424728-thorium-plasma-battery-end-oil-company-slavery-high-speed-bullet-train.pdf&ei=jT3PUsXpD6aO2AW5koCIBQ&usg=AFQjCNGtXyjzIuaDpBJzgGWDN6mpkAlGhQ&sig2=4ynRSdlzdkFYC6T_qsFooA
http://www.change.org/petitions/replace-uranium-nuclear-energy-with-safe-green-cheaper-thorium-plasma-battery-technology-2
http://www.breakthroughenergynews.com/2013/09/06/proven-thorium-plasma-battery-technology-safest-best-nuclear-option/

Of course the Thorium Plasma battery is not a new story, it is a  spin off of the 1990′s story of the water powered car and of the 100 mpg carburetor. I know something about this conspiratorial hoax as it originated in Ohio and was concocted by anti-capitalist leaning groups that want Americans to hate free market capitalism. These group reinforce plausible conspiracy theories that demonize big business.

Stanley Meyer of Columbus, Ohio and his water fuel cell were proved to be fraudulent http://en.wikipedia.org/wiki/Stanley_Meyer’s_water_fuel_cell and he died of a brain aneurysm in 1998.

Supposedly, we can all rest assured that it was those big evil oil companies that squashed Stanley Meyer because here is video proof that his car works…….

Yet, I do not see any cars filling up on water as of late.

Even this is a re-hashing of a conspiracy ladened mythology surrounding those that supposedly conspired against Tesla.

And here is yet another Ohio based water to fuel invention that recently was all the rage.

And of course we all hope that Mario is still alive! (Caution: Very Funny!)


 

Why is there such a breadth and scope of these conspiracies? These conspiracies start off as great entertainment and morph their way into reality through online forums, books, and movies. But they also gain their way into our culture in more malevolent ways. The Nazis of WWII and the Soviet Union started many dis-information campaigns that were designed to divide Americans and make our culture weaker. Operation INFEKTION was just one such campaign to convince the American public that AIDS was really created by the American government. Many more such campaign are still underway to this very day.

The JFK Conspiracy Theory

One of the very first JFK-Conspiracy books to be published was in 1964 by Joachim Joesten. The book was titled “Oswald: Assassin or Fall Guy” and was published prior to the Warren Report. In this book it was claimed that JFK was killed by the CIA and that Oswald was not a lone gunman. The book has been used by many subsequent conspiracy-theorists, including Oliver Stone and his movie JFK, to support their views. In fact, it is still parroted to this day.

Only decades later, with the fall of the Soviet Union, it was proven that Joesten was a paid KGB Agent and the publisher was a KGB Front. The purpose of this conspiracy-theory was once again to discredit America and the CIA and sow doubt and fear in the populace. It was quite a successful operation, judging from the thousands of books and articles that still emulate the original KGB-message. 

Marching on Monsanto

While many people may have legitimate arguments with the Monsanto corporation many of the most virulent strains of hate fostered about this company originate with WWII Nazi propaganda and Soviet Union Cold War propaganda.

Monsanto was heavily involved in the Manhattan project that allowed Allied forces to win the day over the Axis forces. This involvement initially took the form of the Dayton Project that was based in Dayton, Ohio which was a logistical and recruitment effort for the Manhattan Project. Charles Allen Thomas of Monsanto was credited for recruiting many key Jewish nuclear physicist, chemist, and engineers that helped build the first nuclear bomb. Obviously, this did not garner any good will with the Nazi propaganda machine and this demonization was easily carried on by the Soviet Union in the Cold War when the chemical Agent Orange was used against soviet trained forces.

Here is a very good article of how Soviet propaganda is being used in the Ukraine to divide its people. (A very good read)

 

Today, even China is getting in on the demonization of the free market system (in Chinese)…

While I admit our government has many problems, and big businesses, as well as special interests, have undue influence with our federal government……we should not be so eager to believe everything on the internet.

 

The post The Mythology of the Thorium Car, Thorium Plasma Batteries, and More! appeared first on The Energy From Thorium Foundation.

Author: "Jon Morrow" Tags: "blog, Thorium, Uncategorized, conspiracy"
Comments Send by mail Print  Save  Delicious 
Date: Friday, 11 Apr 2014 20:36

Ohio has many testing facilities that could be used in developing a LFTR Reactor:

 

Ohio is home to two Nuclear power plants. Davis Besse and Perry Nuclear Power Plant. Perry Nuclear power plant was suspended into the construction of its second unit and could serve as a perfect site for a test or research reactor. (see picture of only one cooling tower in operation)

Perry-Nuclear-Power-Plant-Ohio

 

NASA Plum Brook Station in Sandusky, Ohio has 6,400 acres to develop new technologies and was already home to a nuclear reactor. This could also serve as a site for a LFTR production assembly line as well as a power generation test facility.

NASA Plum Brook

 

Most Recent tour of NASA Plum Brook Station has facilities that could be adapted for testing of research and test reactor components.

Older tour of NASA Plum Brook Station in Sandusky, Ohio

 

NASA Glenn Research Center in Cleveland, Ohio (formerly NASA Lewis Research Center) has a high temperature materials laboratory.

 

Dublin, Ohio also has a high temperature materials testing laboratory.
Wright Patterson AFB has the National Air Force Research Laboratories that have a multitude of laboratories that would be useful in the development of the LFTR reactor.

 

Piketon Ohio’s United States Enrichment Corporation Gaseos Diffusion plant is home to America’s last American owned enrichment facility. It is home to America’s attempt to modernize new enrichment technologies.

USEC
Piketon Ohio, USEC Gasseous Diffusion Plant old (Part 1)

(Part 2)

Babcock and Wilcox has a Barberton Location (Here)

Ohio is home to Batelle which is the world’s largest non-profit developer of technology.

Ohio State University is home to a Nuclear Reactor and has a very active nuclear program

The post Strengths of the State of Ohio in developing LFTR Technology appeared first on The Energy From Thorium Foundation.

Author: "Jon Morrow" Tags: "blog, Thorium, Uncategorized, davis bess..."
Comments Send by mail Print  Save  Delicious 
Date: Friday, 11 Apr 2014 17:56

tesla model s

Who Killed the Electric Car? The Public! and Possibly the Navy!

 And why LFTR is Wind and Solar’s Best Friend or Worst Enemy

Commentary by Jon Morrow

Let me preface this commentary by saying, Last night I drove a  friend’s Tesla model S and it is an extremely cool car. A few months ago I drove a friend’s Chevy Volt, again, an extremely cool car. Their fit, finish, and function, are at, or above, that of their fossil fuel counterparts and so it is unfair to say that I hate these cars simply because they are electric. If I could afford one, I most likely would have one. If I were comparing these cars to cell phones, the Tesla would be an Apple iPhone in a world of flip-phone cars.

A base model Volt cost $34,185 (minus the $7,500 tax credit) and a base model Chevy Cruze costs $17,520. The Volt claims to get an average of 138/mpg and so if you drive 10,000 miles per year for 5 years you are going to use 360 gallons of gasoline. At $3.60 per gallon, that equates to $1,300 of gasoline.

The Chevy Cruze gets 27/mpg city and 46/mpg highway. If we assume all city driving for 10,000 miles per year for 5 years you will consume 1,851 gallons of gasoline. At $3.60 per gallon, that equates to $6,664 of gasoline.

The difference between the price of the cars is $16,665 and the difference between the gasoline usage is only $5,364. The Chevy Volt only starts to make economic sense if you travel on the order of more than 30,000 miles per year and most Americans travel between 10,000 and 20,000 miles per year. Of course, if you are an over the road salesman that travels vast distances the Chevy Volt is a great choice for you. Add in the $7,500 electric car tax incentive and you can begin to get close to making electric cars look attractive to the average American driver, but not quite.

The Tesla Model S starts at $69,600 and is an all-electric car. It has a range of about 300 miles on a full charge. It is not fair to compare a Tesla model S to a Chevy Volt, well, because it is just so much more of a luxury car compared to the Chevy Volt. The Cadillac ELR is sort of the luxury version of the Volt and has a base price of $75,000. The Cadillac and Tesla are in a price range that is outside of the average American’s pocketbook.

The less exciting and much less cool Ford Focus Electric and Nissan Leaf are all electric cars that are in a similar price range to the Volt ($28,000 to $34,000). These cars require a large up-front commitment (like the Volt) in the purchase price of the car, and in many places in America where coal fired powered plants have been closed early because of EPA regulations, and electricity costs have doubled to pay for the early closure, an all-electric car is not looking too seductive right now. Couple the high cost of electricity with a short range and I would gander to say these cars are either “feel good” about yourself cars for the environmentally conscious and those that can afford it or are “bragging right” cars for those pursuing a tech-nirvana lifestyle.

 

Why am I talking about electric cars?

Many environmentalist groups now see the electric car as the answer to grid level storage of electricity to account for the negative effects of the variability of renewables. The theory is that if we all drive all-electric cars – that the batteries in the cars would act as grid level storage and thereby allow a greater use of renewables. The problem is unless gasoline shoots up to the stratosphere in costs and renewables plummet in cost, the electric car just does not make economic sense for the average American (that is not to say it does not make “cool sense”).

The Nissan Leaf and the Ford Focus Electric, more than likely, will never be adopted by high mileage drivers because of their short range and recharge times. They are too expensive for low mileage drivers with the relatively low price of gasoline. This is probably why the Chevy Volt is one of the best selling hybrids (not accounting for government sales).

There is a theory out there that all environmentalists should oppose base-load power plants. Base-load power is normally (and correctly) thought of as coal and nuclear power plants. The theory is we should replace base-load power plants with natural gas peaker plants. The way the theory is laid out sounds reasonable and plausible. By placing many small natural gas peaker plants and renewable plants on the grid and couple that with the battery storage in all-electric cars – we will then have a cheap, clean, and well distributed electrical generation system. The problem with this theory besides gasoline still being too cheap, electricity derived from renewables being too high, battery powered cars having too short of range, and electric cars being too expensive is: natural gas powered peaker plants produce much more CO2 than their natural gas based-load counterparts or baseload nuclear power plants. If the whole idea is producing less CO2, the peaker plant theory just doesn’t work.

An example of the no base-load power theory 

An Example of Using the Electric Car for Grid Level Storage

 

Something to chew on:

A LFTR (Liquid Fluoride Thorium Reactor) has load following capabilities that is able to accommodate the peaks and the valleys that renewable energy creates while producing power at base-load cost and producing no CO2. In this sense a LFTR is renewable energy’s best friend if it does not put renewables out of business due to economic competition.

If a battery technology comes along that can store a massive amount more power, which does look like it is on the horizon, then most likely it would also be used for grid level storage. The economics of a LFTR can make the economics of the electric car look much better because it can radically reduce the cost of electricity. The lower the electricity costs are the more attractive electric cars are to the average American.

Some new Battery Technologies

Another thing to chew on!

At the higher temperatures that a LFTR operates at it is possible to produce carbon neutral fuels from seawater. Since carbon neutral hydrocarbon fuel has many times the energy density of batteries, why use battery powered electric cars at all. New Navy technology threatens the entire electric car industry. The thought of combining this seawater to fuel technology with LFTR technology might just make those that own stock in an electric car company shake in their boots.

The post Who Killed the Electric Car? The Public! and Possibly the Navy! appeared first on The Energy From Thorium Foundation.

Author: "Jon Morrow" Tags: "blog, Strategy, Thorium, Uncategorized, ..."
Comments Send by mail Print  Save  Delicious 
Date: Thursday, 10 Apr 2014 16:15

Steve-Jobs_full

 

 

Commentary by Jon Morrow

Cancer and HIV are some of the most important health problems of our day and they are of growing importance. The treatments available today, even though often effective, cannot permanently cure the majority of cancers. This is typically true for cancers that have spread around the body from the initial tumor site or are blood borne cancers.

Radiation therapy uses ionizing radiation to kill cancer cells and shrink tumors by damaging the cells’ DNA, thereby stopping these cells from continuing to grow and divide. The most common way of exposing cancer patients to radiation is through external radiation therapy (such as the Axesse, Cyberknife, Gamma Knife, Novalis, Primatom, Synergy, X-Knife, TomoTherapy, Trilogy and Truebeam and Proton Therapy).

With this approach, delivering a beam of high-energy x-rays or protons to the main tumor irradiates only a limited area of the body.

Cutting edge technologies such as Proton Therapy treatments are preforming miracles where previously patients were given death sentences. This is done by delivering radiation very accurately and precisely.

Each of these cutting edge technologies are attempting to deliver radiation with greater precision to the cancer cells only and trying to leave healthy tissue unharmed. The greater the precision, the less healthy tissue that is harmed, and the less time of recovery and the less sick a patient becomes from the treatment.

Targeted radionuclide therapy is a new kind of cancer treatment that aims to be even more precise. It uses radionuclides (radioisotopes) as smart bombs in waging the war on cancer. Targeted radionuclide therapy combines new developments in molecular biology and in radionuclides to create new medical applications. Due to their decay characteristics alpha-emitting-radionuclides are particularly promising in selectively destroying just cancer cells and leaving healthy tissue relatively untouched. This has spawned an area of research known as TAT (Targeted Alpha Therapy). Some biomolecules, like monoclonal antibodies or specific peptides, can selectively target particular cancer cells; they will find these cells, even if spread around the body, and bind to them. If an alpha-emitting radionuclide is attached to such a tumor specific carrier, the alpha particle produced during its radioactive decay can kill one or a few targeted cancer cells along its trajectory.

TAT is a bit like chemotherapy, because it is a systemic treatment; however, it uses a monoclonal antibody labeled with a radionuclide to deliver a toxic level of radiation to diseased sites. A unique feature of radionuclides are that they can exert a “bystander” or “crossfire” effect, potentially destroying adjacent tumor cells even if they lack the specific tumor-associated antigen or receptor. In addition, a systemically administered targeted radiotherapeutic that combines the specificity of cancer cell targeting with the known antitumor effects of ionizing radiation has the potential to simultaneously eliminate both a primary tumor site and cancer that has spread throughout the body, including malignant cell populations undetectable by diagnostic imaging.

Alpha radionuclides in laymen’s terms, are very powerful yet, have a very short kill radius (only a few cell diameters). Current beta radionuclides used in some chemotherapy treatments have a large kill radius and tends to harm quite a bit of healthy tissue on its way to knocking out the cancer. Beta radionuclides tend to make patients sick and weak because of the healthy tissue they kill. Whereas, if Alpha radionuclides can be successfully delivered to the cancer cells only, then healthy tissue will remain unaffected.

The actinium225 radionuclide is a particularly promising smart bomb in the treatment of cancer because of its decay rate and an increasing number of different cancer types are under study in pre-clinical and clinical approaches, including in vitro studies, animal studies and phase I/II clinical trials with alpha radionuclides. In addition, recent studies have demonstrated the applicability of targeted alpha therapy for the treatment of fungal, bacterial and viral infections.

European and American researchers believe that radiolabeled (radionuclides attached to) antibodies might eradicate the immunodeficiency virus-infected cells from a patient’s body. Scientists have combined antibodies with radioactive payloads that deliver lethal doses of ionizing radiation to selectively target and destroy HIV infected cells. This hypothesis has been successfully tested in a joint project between the Albert Einstein College of Medicine in New York and the Joint Research Center (JRC) Institute for Transuranium Elements (ITU) as reported in the Public Library of Science. These results provide first support for the concept that these antibodies labeled with the radionuclide bismuth213 (a daughter isotope of actinium 225) can be used for treatment of HIV. Pre-clinical development testing the efficacy and safety of this novel therapy approach are being undertaken in preparation of a Phase I clinical trial in HIV infected patients.

Because this method of treatment allows these radionuclide (smart bombs) to be injected into the body and seek out and find the disease, therein lies the hope of a permanent cure. The theory is in essence, they will eradicate all the disease no matter where it is in the body.

Alpha particles are especially well suited for targeting micrometastatic disease and single tumor cells such as leukemia and other blood-borne disease. The bismuth213 radionuclide is of special interest in treating leukemia because of its unique properties, which include a short 45 minute half-life and high energy (8.4 MeV) alpha-particle emission.  Its unique availability from the actinium225/bismuth213 generator system makes this radionuclide particularly well suited for medical use.  Actinium225 is formed from radioactive decay of radium225, the decay product of thorium229, which is obtained from decay of uranium233. The National depository of uranium233 is at ORNL (Oakridge National Laboratories), and both INL (Idaho National Laboratories) and ORNL have developed effective methods for obtaining thorium229 (half-life 7340 years) as feed material to routinely obtain actinium225.

The majority of the available thorium229 stock has been recovered from the nuclear waste material uranium233 from experiments conducted at ORNL and has been stored at ORNL for about 30 years.  This stockpile has been able to produce about 1,000 doses per year for clinical trials.

The problem is we are not producing anymore uranium233 and the federal government has had its eye on a half a $billion program to down blend this uranium 233 to essentially destroy this life saving material.

Ironically, we could potentially have both the cure for cancer and HIV but, the government may destroy the curedue to special interests and anti-nuclear activist.

If we are able to prevent the government from destroying the potential cure for Cancer and HIV how are we to produce more of the actinium225 isotope?

A LFTR (Liquid Fluoride Thorium Reactor) which, is a type of MSR (Molten Salt Reactor) can produce actinium225 in the normal course of operation and a fleet of LFTRs can produce enough actinium225 to meet the needs of the medical community if a cure for these diseases are developed. A LFTR can produce carbon free electricity at half the price of coal and study of an operational LFTR most likely will allow us the technical expertise to create a MSR Actinide Burner. A MSR Actinide Burner is a type of reactor that could reduce our unspent nuclear fuel stockpile to a mere fraction of what it is today and reduce the need to store this waste from hundreds of thousands of years to just 300 years.

The post A Promising Treatment / Cure for Cancer and HIV: Destroyed? appeared first on The Energy From Thorium Foundation.

Author: "Jon Morrow" Tags: "blog, Safety, Thorium, Uncategorized, ai..."
Comments Send by mail Print  Save  Delicious 
Date: Monday, 07 Apr 2014 14:55

OberlinCollege

Students celebrate winning Oberlin’s annual Dorm Energy Competition Photographer: College Relations

 

Commentary by Jon Morrow

The world is filled with hate and if you cannot be respectful of other peoples views you can help foster more hatred and anger. This is especially true when you talk about our energy future.

There are many people that believe in man-made “Global Warming” and “Climate Change” and believe there is only one way to avert these crises and that is with renewable energy technology. No other technology can be discussed as a solution, because if you do, then you are a pawn for the big money behind that respective technology.

Can we all grow-up and have a rational discussion on energy without calling each other names?

Oberlin, Ohio is home to Oberlin college with some of the best and brightest students in America attending this small school. While it is a small school, it ranks right up there with Harvard, Princeton, and Yale in cost and in quality of education. It is also known as having one of the most green conscious and liberal student bodies in America.

Oberlin college is a perfect example of where, if paranoia and name calling is put aside, that both the ultra-right and ultra-left can come together on an issue like thorium based MSRs (Molten Salt Reactors). I know, I have experienced rationale debate on campus first hand.

A popular restaurant with college students is the Feve, and when in town, I like to go to the upstairs bar and strike up a conversation on energy with some of the students or faculty. This is normally very easy to do and students love to share their views.

I respect the position of the people that believe in man-made Global Warming and the renewables solution, I just ask if they have thought it all the way through (I am a man-made global warming skeptic and I do not believe that wind and solar are a solution to our environmental problems). I am very careful in my discussion, as I know the words that will shut them down and cause them to close their minds to any further debate. Words like “intermittency” and “on-demand” are not things a person with a vastly different viewpoint wants to hear.

I normally start the conversation as such:

Because our current electrical grid has to work with other technologies, natural gas peaker plants have grown by leaps and bounds with the addition of solar and wind. These peaker plants are cleaner than coal but are less clean than baseload natural gas plants. The natural gas peaker plants act as a compliment to wind and solar to stabilize the grid. The question I ask is, “Do the peaker natural gas plants put out more CO2 running in compliment with the wind turbines they support than what a natural gas baseload and/or a nuclear power plant does to create the same amount of energy?”

Many students cannot answer this question with any certainty.

I then start to talk about the benefits of MSRs and LFTR and there is a lot of push back.

At Oberlin college there are a lot of students there that are anti-fracking advocates and so, while natural gas burns cleaner, they do not necessarily like natural gas. Solutions that they like are natural gas made from bio-digesters and natural gas from landfill to support wind and solar. More times than naught, when nuclear is mentioned, you get looked at as if you have a third eye. After much discussion I challenge them to watch three documentaries. The first documentary is “Cool It!” by Bjorn Lomborg, an environmentalist and a big believer in global warming. The unbiased review of all energy technologies by Dr. Scott Tinker in the “Switch Energy Project” and finally “Pandoras Promise” by director Robert Stone. After watching these three films, it has been my experience, that even the most vitriolic anti-nuclear opponents have warmed to nuclear energy.

Getting a college student to watch a documentary in their free time is hard but the  ”Cool It!” documentary draws them in and, dare I say, helps to form a bridge between the left and the right. Many times if you get someone to watch “Cool It!” they will watch the other two documentaries. “Cool It!” is available on iTunes and “Pandora’s Promise” is available on iTunes and on Netflix.

Kirk Sorensen’s “TED talks” and Dr. Robert Hargraves “Aim High” video seals the deal and gets them so enamored with thorium that I get students that will call me telling me they have discovered yet another of Gordon McDowell’s videos.

Now, when I go to the Feve, a lot more people know about thorium energy and MSRs, not from me, but from other student advocates. They still believe in man-made global warming and climate change and that is okay with me. They also believe that wind and solar are part of the solution and that is okay with me. But now, instead of a vitriolic hatred for nuclear energy, they see it as having a dominant and substantial role in our future.

The post Can We All Just Get Along? appeared first on The Energy From Thorium Foundation.

Author: "Jon Morrow" Tags: "blog, Thorium, Uncategorized, hate, ober..."
Comments Send by mail Print  Save  Delicious 
Date: Sunday, 06 Apr 2014 17:08

ford f150

Aluminum

Although there is a very high worldwide demand for aluminum, as will be seen below, the American aluminum industry is hamstrung in its goal of meeting this demand by a series of outsized costs, including the cost of building a new plant; regulatory costs; and energy costs.  Plant costs and regulatory costs must be addressed by the industry and by their federal, state, and local governments.

A steep reduction in energy costs, which constitute a very large portion of the cost of producing aluminum presently, can and will be addressed by the production and operation of the LFTR (Liquid Fluoride Thorium Reactor).

What would it cost today to build a typical aluminum reduction plant with an annual production capacity of 250,000 tons? Based on the most recently completed plants, an estimated $1.5 billion would be required.

Add to this the regulatory requirement that this new smelter provide its own generating facilities to provide the large amounts of electricity needed for processing the aluminum which it will produce, and that it meet governmental regulatory emissions goals.  This will increase the installation cost by $300 million to $406 million.  Now we are pushing the $2 billion mark for a new aluminum smelting plant. All of this assumes that a suitable site location can be found with the necessary support services, and that the site will be approved by all the relevant federal, state, and local regulatory agencies, and in a timely manner.

Today in the United States it would take several years to get the required permits and clearances. It is almost as hard to build and Aluminum plant as it is a Nuclear power plant. The construction of an aluminum plant would involve the need for environmental impact studies and reports, and hearings with many regulatory agencies and local and national governments, with no guarantee that final approval would not be challenged by court appeals.

 Such cumulative considerations, when combined with the present unavailability of needed energy at a competitive price, lends some credence to the often heard statements that another aluminum smelter plant will not be built in the United States.  These roadblocks must be overcome for American industry to take advantage of the huge worldwide demand for aluminum.  Americans’ jobs and America’s prosperity are at stake.

  Ormet Aluminum, America’s 4th largest producer shutdown in December of 2013

 

Demand and Markets for Aluminum

 

There is an enormous market for continued and increased production of aluminum in the United States.  Like oil, the world cannot get enough aluminum. China and India’s reach from the third world to the first world has dramatically increased the demand for aluminum.  Top market sectors for the industry are transportation, including automotive and aerospace, beverage cans and other packaging, building/construction, and the electrical industry.

Chinese demand, as measured by Chinese consumption of unwrought aluminum, grew almost every year during the 1995-2004 period, nearly doubling between 1995 and 1999, and subsequently more than doubling between 1999 and 2004. Over the full 10-year period, Chinese consumption rose nearly three-fold (up 4.0 million metric tons) to reach 5.9 million metric tons by 2004, equal to 20.1 percent of global consumption in that year. From 2004 to 2012 there was nearly a four-fold increase in Aluminum consumption.

In contrast to developed countries where the transportation sector dominates, building and construction is the largest aluminum-consuming sector in China, a reflection of ongoing building construction and infrastructure development and significantly lower per capita automobile ownership. In addition, the share of Chinese aluminum consumption accounted for by electrical products and consumer durables exceeds that of many industrialized nations, a reflection of both the country’s growing export-oriented manufacturing sector and its rising domestic consumer markets.

China’s relatively low per-capita consumption rate for unwrought aluminum, coupled with its expanding industrial activity and government housing programs, suggest that Chinese demand for aluminum will continue to grow, particularly in the construction and automotive sectors.  An estimated 3.3 million apartments are being built every year in China, averaging approximately 240 million square meters of new housing each year.

Transportation

 

Integrating lightweight aluminum into transport vehicles is one of the easiest ways to reduce the amount of fuel our vehicles consume. If conservation is a goal of America’s energy plan, then the use of lightweight and more affordable aluminum should be part of that plan.

 

Automotive

 

In 1994, transportation first emerged as the largest market for aluminum, at about one-quarter of the market, with passenger cars accounting for the vast majority of the growth. Up until 2009, that trend largely continued.  However, 2009 marked the worst year for auto sales since 1982 and, as such, transportation applications accounted for only 23.7 percent of all aluminum shipments in 2009 – 4.22 billion pounds in all.

The majority of this aluminum was used in automotive and light truck applications, as vehicle manufacturers continue to opt for lightweight aluminum solutions to improve fuel economy, reduce emissions, and enhance vehicle performance, for which aluminum is ideal.  Accordingly, the aluminum content in passenger vehicles and light trucks has grown more than 40 percent and 68 percent, respectively, since 1991. Aluminum-intensive automobiles include the Audi A8 – with its aluminum body, aluminum front and rear axle, aluminum engine block, and numerous other aluminum components – and the Jaguar XK, with its aluminum body structure.

The China automobile market is expected to surpass that of the United States in 2014, which will result in more aluminum usage.  Ownership of private automobiles in China is expected to increase. According to the Central Government, vehicle sales in China may rise to 20 million units in 2014 (from 5.1 million in 2004). By 2010, Chinese aluminum usage in automobiles was anticipated to approach 5 million metric tons.

Aerospace

In the aerospace market, increased build rates for both military and civil aircraft have led to increased demand for aluminum. For example, between 1995 and 2004 U.S. production increased from 1,625 to 3,440 aircraft per year, despite a significant drop-off in production after the September 11 attacks. A new surge of aircraft orders in 2005 has sustained aerospace industry demand for aluminum through 2013, even in America’s slow growth economy (new orders are expected between 2014 through 2016 to replace aging aircraft).

 

Packaging

Demand for aluminum packaging, consisting mostly of flat-rolled aluminum sheet for beverage cans and foils for food packaging, has dramatically increased in China and India as their standard of living increased. Adding to this, many new applications for aluminum beverage cans have been introduced, particularly for energy drinks and beer. Additionally, the packaging market reflects increasing trends for prepared and frozen meals and blister-packaging for pharmaceutical products.

 

Construction

In the construction market, leading uses of aluminum are for window frames, doors, siding and facades, closely followed by support framing for roofs and walls. The construction market has been particularly strong in the industrializing economies of China and India.

 

Electrical

Aluminum has many advantages for electrical applications. It is lightweight, strong, corrosion resistant, and a highly efficient conductor (aluminum has twice the conductivity, per pound, of copper)—rendering it the material of choice for widespread applications such as transmitting power from generating stations to homes and businesses, and to make electronic boards for computers and handheld electric devices such as cell phones. Aluminum is also infinitely recyclable, making it a perfect fit for today’s environment and environmental priorities.

 

Importance of the Aluminum Industry in America

Aluminum is one of the few products and industries left in America that truly impacts every community in the country, either through physical plants and facilities, recycling, heavy industry, and/or consumption of consumer goods.

China is rapidly dominating aluminum markets, from securing mineral rights to many foreign countries’ bauxite formations, to building refining and smelting plants in China. All the while, America is not constructing any more aluminum manufacturing plants due to environmental regulations and electricity costs.

So, it is in America’s best interest to lower the manufacturing costs of aluminum, to produce aluminum economically and with a high degree of environmental responsibility for our nation’s greater economic security.

 

 

China’s Growing Dominance

 

America exports much of its recycled Aluminum. A discarded can of soda has a 75% chance of ending up in China.

China’s impact on the global market has been significant in three principal ways.

First, China’s need for alumina to fuel its expanding aluminum production has driven alumina prices to record highs in some places, narrowing profit margins for producers of unwrought aluminum, and contributing to restructuring throughout the industry. In other places, because China’s aluminum business have been operating at a loss and because the world economy has been failing there is a surplus of aluminum and American aluminum manufacturers are going out of business (because they are not subsidized like China’s Aluminum companies).

Second, anticipation of growth in China’s demand for aluminum has increased production capacity worldwide. New countries have emerged as leading players in world markets as firms look to streamline operations and take advantage of low-cost electric power.

Finally, China’s role in the global marketplace has expanded significantly as state-owned Aluminum Corporation of China (Chalco) has emerged as one the world’s leading aluminum producers and China has moved from a net importer of aluminum to a net exporter.

Looking forward, it is uncertain whether Chinese aluminum output can keep pace with anticipated growth in domestic consumption from its rapidly urbanizing economy and that of India, and their expanding industrial production. If China does not receive help in producing more aluminum for the world market, aluminum prices could rise dramatically.

 

Supply of Aluminum in China

 

In 2005, 40 percent of China’s smelters were operating at a loss, and an estimated one-quarter of Chinese capacity was idle. Additionally, the Chinese aluminum industry’s rapid expansion risked overwhelming the world market, leading to sharp declines in the global market price for unwrought aluminum.

Inadequate electricity supply and the lack of high-quality bauxite constrained faster expansion of Chinese aluminum production. For example, inadequate and uncertain electric power supplies had prevented expansions of several primary-smelting operations. As new coal and nuclear power plants come on line, the problem of inadequate power supply is being erased. Additionally, China currently relies on imports for an estimated one-half of the alumina necessary to meet its aluminum smelting needs, as the mineral content of the Chinese bauxite renders it more expensive and difficult to refine than bauxite available elsewhere.

The only major supplier of alumina from domestic sources in China is Chalco, which has traditionally supplied many Chinese aluminum smelters with alumina through contracts priced below the cost of imports. Imported alumina usually reflects the spot market price. However, as Chalco has expanded its production of domestic unwrought aluminum, the firm has reduced sales of alumina in order to supply its own smelters and has raised the price at which it sells alumina to other firms outside the country. Chalco’s actions have increased market demand for alumina, causing worldwide prices for alumina to rise significantly.

Future prospects for growth in China’s production of unwrought aluminum depend on further progress in addressing high-cost and inadequate supplies of alumina and electric power, upgrading outdated smelting technologies, and complying with potentially strict government measures to rein in production overcapacity (Chinese price controls are not unlike OPEC’s price controls of the oil market) in the aluminum industry.

Aluminum Processing

 

In order to understand the nature of the non-regulatory costs of aluminum production, it is first necessary to understand how aluminum is created and the breakdown of the costs of its manufacture.

Aluminum does not occur in nature as a metal, but in the form of deposits of bauxite ore.  Unfortunately, at present there is no domestic source of bauxite, and U.S. aluminum manufacturers import 100% of their bauxite ore from Jamaica, Guinea, Brazil, Guyana, China, Sierra Leone, and Greece.

Bauxite is mined, and by a two-step chemical process, the bauxite is refined into an oxide called alumina – one of the feed-stocks for aluminum metal.  The end of this alumina creation is a drying process which requires large quantities of heat energy.

Aluminum is made from alumina, and this process requires enormous amounts of electricity.  Alumina and a molten electrolyte called cryolite are combined in a cell. Direct current electricity is passed from a consumable carbon anode into the cryolite, splitting the aluminum oxide into molten aluminum metal and carbon dioxide.  The molten aluminum collects at the bottom of the cell and is periodically “tapped” into a crucible and cast into ingots which are then sold to customers which process the metal into its various applications.

Energy Use

The aluminum industry is a major industrial user of electricity.  Because the electrolytic process is the only commercially proven method of producing aluminum, the industry has on its own pursued opportunities to reduce its use of electricity. In the last 50 years, the average amount of electricity needed to make a pound of aluminum has been slashed from 12 kilowatt hours to about 7 kilowatt hours, but the aluminum industry is constantly searching for ways in which energy and other production costs can be reduced.  Although continual progress has been made over the 125-year history of aluminum processing to reduce the amount of electricity used, there are currently no viable alternatives to the electrometallurgical process.

 

A Vicious Spiral

Electricity is a huge component of the manufacturing cost of aluminum (30% to 40%).  As energy costs increase, so does the price of aluminum.  This cost increase of aluminum, caused primarily by the rise in electricity costs, results in less aluminum being incorporated in the manufacture of automobiles.  This, in turn, increases the weight and lowers the fuel economy of our vehicles, and raises our use of and dependence on imported fossil fuels. The more affordable aluminum is, the less dependent we are on other countries for transportation fuel derived from oil.

How Thorium Energy Will Help the American Aluminum Industry

 

Drastically Reduced Electricity Costs

 

Thorium Molten Salt Reactors (THMSR) will revolutionize, for the better, the American aluminum industry in several ways.  Most effective is thorium power’s production of electricity at $.02/kilowatt hour, which is one-half the cost of coal ($.04/kilowatt hour), one-third the cost of natural gas ($.06/kilowatt hour), one-fourth the cost of traditional nuclear ($.08/kilowatt hour), and at one-sixth the cost of wind energy ($.12 and greater/kilowatt hour).  As stated above, the electricity costs to smelt aluminum constitute 30% – 40% of total manufacturing costs.  Depending on the fuel for the production source of the electricity being used, this electricity cost will be cut by at least 50%.  Because of the increasing regulatory burden being placed on coal fired power plants, and the turn to natural gas, it is likely that the aluminum smelting electricity costs will be cut by two-thirds by use of THMSRs.  This is sure to have a salutary effect on the building of new aluminum plants and the creation of jobs in the industry.

Because electricity this cheap will dramatically reduce the cost of making aluminum, which will lower the market cost of aluminum significantly, aluminum will become more attractive to auto manufacturers.  The resultant reduced weight of vehicles will help America conserve transportation fuel and make America less dependent on foreign countries for its transportation fuel needs. Less demand for oil can translate to lower fuel costs.

In addition, in creating this very inexpensive electricity, and unlike with coal and natural gas, the THMSR will be a non-polluting and non-carbon emitting energy source.

 

Extraction of Alumina from Waste Products of Coal

 

Again, there is no American domestic source of bauxite ore to use for aluminum production; it all must be imported.  However, there are abundant domestic sources of aluminum other than bauxite.  Notable among them is coal ash or fly ash, a “waste” product of the combustion of coal.  There are landfills nationwide replete with coal ash from historical burning of coal, and we produce 60 million tons per year.

Aluminum oxide is a major constituent of fly ash (14.8%).  If this could be recovered from the fly ash produced in the United States, bauxite would not have to be imported.  Coal’s “waste” product is, in reality, a strategic resource important to the United States.

A large part of the process of removing aluminum oxide from fly ash requires the use of a lot of heat.  Providing that heat by use of the burning of coal or natural gas is both expensive, and involves a large carbon footprint.

A THMSR produces abundant process heat; it runs much hotter than a traditional nuclear reactor.  THMSRs will produce, without any carbon footprint, sufficient heat required for the process of separating aluminum from coal ash.

Combining affordable heat conversion and the affordable electricity necessary to “smelt” aluminum, both being derived from the same THMSR, there then begins to emerge great market potential for the aluminum industry in the “Coal Ash to Aluminum process”.

Extraction of Thorium from Waste Products of Coal

Coal ash also contains Thorium. If a THMSR is used to drive the process of Aluminum conversion, 100% of the Thorium could be extracted from coal ash and be used to fuel the “Coal Ash to Aluminum” production process.

In addition to thorium, coal ash also includes valuable components of iron, titanium, and vanadium, as well as the hazardous elements mercury and arsenic.  Uranium is found in coal ash; it is slightly radioactive, and the thorium is less radioactive than the uranium.

 

Thorium in Rare Earths Deposits

Radioactive materials are rarely found alone in the earth’s crust.  The mining of rare earths yields other metals extremely important rare earths in addition to the miners’ targeted elements.  As in coal ash, rare earth mining finds the radioactive elements thorium and uranium.  Under government regulations, these must be treated as low level radioactive “waste” by the rare earth mining industry, and secured and stored.  This requirement, of course, raises the cost of mining rare earths.  Millions of dollars are spent in storing and destroying thorium, when instead the thorium should be used to provide energy to us all.

 

The post Could Thorium Energy Prevent China’s Aluminum Dominance? appeared first on The Energy From Thorium Foundation.

Author: "Jon Morrow" Tags: "blog, Media/Outreach, Uncategorized, Alu..."
Comments Send by mail Print  Save  Delicious 
Date: Sunday, 06 Apr 2014 16:00

Seasteading-Promo

 

Commentary by Jon Morrow

I have recently been working with a fairly famous science fiction writer, and have been pressing him to include thorium based MSRs (Molten Salt Reactors) in his next movie or television production. Hopefully this would raise the profile of thorium based and help gain interest in the technology. Like many futurist and good scifi writers, he was able to dream up a tantalizing vision of the future, which was not immediately obvious to me. He is very active in the seasteading world. See video below.

 

 
When those in the thorium community dream of a future with thorium based power plants we normally dream of them powering space ships and moon-bases as well as powering the planets need for pollution free electricity.

In a previous storyline this author had conceived of a future with a “weather modification net” that prevented extreme weather on Earth. It was integral to preventing tornados and hurricanes in this made up world of his. He had never came up with a plausible explanation of how a weather modification net might actually work. He was toying with the idea of scientist strategically drilling deep sea hydro thermal vents that not only controlled underwater currents like the gulf stream (that keeps the United Kingdom relatively warm) but, would create and power new under water currents. These underwater currents would prevent extreme weather events and could be turned on or off as needed to modify the weather.

My science fiction writing friend is using a “thorium drive” as a precursor to the warp drive. In this future, thorium technology is now obsolete for spaceships but still powers the weather modification net. This net would work by strategically placing underwater thorium reactors in the oceans that would heat the water, and in this future world, would turn on and off underwater currents – which would affect weather patterns and control the weather.

When not used to control the weather they once made synthetic transportation fuel from sea water until a better power source was found for personal transportation. It was thorium energy, in this future world, that was a gateway to all other technologies that allowed man to solve so many of his earth bound problems that allowed him to concentrate on the exploration of space.

The back story of how Thorium MSRs are developed is an entirely different story set in our not too distant future. A billionaire industrialist that is super smart (think Tony Stark from Iron/Avengers movie or perhaps real life Elon Musk) family is killed by terrorists. Determined to stop the geopolitical issues that lead to terrorism he comes up with the “Thorium drive” to create fuel and power but, the nations of the world will not let him build the “Thorium drive” for safety and economic reasons. Frustrated, the billionaire buys an island in the South Pacific and creates an island paradise secretly powered by a thorium reactor and protected by super a fleet of advanced thorium powered submarines. When word gets out the United Nations try to shut him down. When attempts by other nations to steal his technology fail, they launch an all out attack – and fail miserably against the billionaire’s technology. The billionaire then addresses the United Nations and makes his technology available to every nation in the world. This brings about world peace by everyone able to have more of everything. This leads to the nations of the world coming together to build the weather modification net and starting to explore space.

seasteading original

Can anyone in the thorium community add any ideas (this is science fiction) that would help support the plausibility of his future vision? He normally likes to have engineers and futurists familiar with current technology that could envision how it would change the world to comment before adopting an idea because he wants his vision of the future to be plausible. Please comment.

underwater nuclear

A French Defense firm DCNS has come up with a real life under water nuclear reactor design. Read more here.

 

The post Man-Made Climate Change: On Purpose???? appeared first on The Energy From Thorium Foundation.

Author: "Jon Morrow" Tags: "blog, Media/Outreach, Uncategorized"
Comments Send by mail Print  Save  Delicious 
Date: Friday, 04 Apr 2014 20:09

ZUMWALT

The Zumwalt-class destroyers are a class of United States Navy Destroyers, designed as multi-mission ships with a focus on land attack.  The class is multi-role and designed for surface warfare, anti-aircraft, and naval fire support. They take the place of battleships in filling the former congressional mandate for naval fire support, though the requirement was reduced to allow them to fill this role. The vessels’ appearance has been compared to that of the historic ironclad warships.

The class has a low radar profile; an integrated power system, which can send electricity to the electric drive motors or weapons, which may someday include a rail gun or free-electron lasers. The total ship computing environment infrastructure, serving as the ship’s primary LAN and as the hardware-independent platform for all of the ship’s software ensembles; automated fire-fighting systems and automated piping rupture isolation. The class is designed to require a smaller crew and be less expensive to operate than comparable warships. It has a wave-piercing tumblehome hull form whose sides slope inward above the waterline. This will reduce the radar cross-section, returning much less energy than a more hard-angled hull form. 

The flag ship will be named Zumwalt for Admiral Elmo Zumwalt, and carries the hull number DDG-1000. Originally 32 ships were planned, with the $9.6 billion research and development costs spread across the class, but as the quantity was reduced to 10, then 3, the cost-per-ship increased dramatically. The cost increase caused the U.S. Navy to identify the program as being in breach of the Nunn–McCurdy Amendment on 1 February 2010. While technically classified as a destroyer, the type is only 10.3 feet (3.1 meters) shorter than the WWII-era Deutschland-class ”pocket battleships”, and actually displaces nearly 4000 more tons than a standard-loaded Deutschland. Zumwalt-class destroyers are also both longer and heavier than the Ticonderoga-class cruiser.

Still powered by fossil fuels

The power source of the Zumwalt is a 78 megawatt array of four compressed natural gas-turbine generators, but that’s the extent of the role of internal combustion engines on the ship. Here’s a rundown provided by our friends at the technology association IEEE:

…the Zumwalt’s propellers and drive shafts are turned by electric motors, rather than being directly attached to combustion engines. Such electric-drive systems, while a rarity for the U.S. Navy, have long been standard on big ships. What’s new and different about the one on the Zumwalt is that it’s flexible enough to propel the ship, fire railguns or directed-energy weapons (should these eventually be deployed), or both at the same time.

Speaking of railguns, another energy-intensive weapon system that could come into play is the Navy’s new laser weapons system (LaWS). Unfortunately, the power requirements for the Navy’s Rail Gun appear that the Navy will not be able to do any run and gun maneuvers. It is estimated that the ship would have to be at full stop to rapid fire a rail gun. Of course that could change with a different power plant.

Here’s the money quote:

As the technology advances, and faced with rising and unpredictable fossil fuel costs, the Navy’s next-generation of surface littoral class combatant ship will leverage electric ship technologies in conjunction with new smaller nuclear power plants with the design characteristics of better speed, weight, maneuverability, range, and cost—and capable to power multiple directed energy weapons at full speed.

For the record, the Zumwalt isn’t quite ready for prime time yet. The launch took place on October 28, 2013 at almost 90 percent completion, so there’s more work to be done before it’s fully operational. The Navy expects to have initial shakedowns completed by 2016.

More to the point, the development of the Zumwalt and its two planned sister ships involves future nuclear technology that could find application in the next generation of civilian electric power generation utilitiess, in addition to the potential for integrating advanced the Navy’s “Seawater to fuels” program.

A ship that can fuel its support ships (instead of vice versa) and other tactical vehicles such as helicopters would allow our ships a great tactical advantage in not having to fuel in a port, where ships can be most vunerable to attack.

The “Seawater to Fuels” program is a perfect application for the high heat of a MSR (Molten Salt Reactor) which can crack the carbon trapped in seawater to produce an ultra clean synthetic fuel.

The post The Zumwalt and the Rail Gun: The Energy Hungry Navy appeared first on The Energy From Thorium Foundation.

Author: "Jon Morrow" Tags: "blog, Fossil Fuels, In The News, Natural..."
Comments Send by mail Print  Save  Delicious 
Date: Friday, 04 Apr 2014 14:45

BraytonCycle2

This article is pertinent to how many experts envision a LFTR (Liquid Fluoride Thorium Reactor) producing electricity without the use of water.

Excerpted from an article by Principle Investigator Steven Wright

In most respects, carbon dioxide is an energy problem. The gas is mixed to varying degrees with methane in underground formations and must be stripped before natural gas is injected into pipelines. It’s created by the combustion of carbon fuels and must be vented away from engines. And the build-up of that CO2 in the atmosphere has many implicating it in global climate change.

Carbon dioxide has some interesting properties, however. Blocks of frozen carbon dioxide don’t melt but, rather sublimate into a gas; solid CO2 is known as “dry ice.” Indeed, CO2 won’t liquefy at all unless a pressure greater than five atmospheres is applied. But at a somewhat greater pressure—around 73 atmospheres—and roughly room temperature, CO2 makes a strange transition from a gas to a state known as a supercritical fluid.

Supercriticality is a hybrid state. A supercritical fluid is dense, like a liquid, but it expands to fill a volume the way a gas does. Small changes in temperature near the critical point—31 °C—will cause large changes in density, similar to boiling where the liquid changes to a vapor. The density change, however, is only a factor of three or four, not a thou­sand as when water becomes steam at atmospheric pressure.

Similarly, it takes a lot of energy to increase the temperature a small amount when the fluid is near the critical point, much the way the heat of vaporization requires energy to convert a liquid to a vapor. Consequently, a large spike in heat capacity occurs near the critical point of CO2 .

There are also viscosity changes that mimic the viscosity difference caused by transitioning from a very dense liquid-like fluid to a vapor-like fluid. And there are no drops and no bubbles because there can be no free surface.

These properties make supercritical carbon dioxide an incredibly tantalizing working fluid for Brayton cycle gas turbines. Sandia National Laboratory that has investi­gated these sorts of turbines for power generation, and is now moving into the demonstration phase. Such gas turbine systems promise an increased thermal-to-electric conversion efficiency of 50 percent over conventional gas turbines.

The system is also very small and simple, meaning that capi­tal costs should be relatively low. The plant uses standard materials like chrome-based steel alloys, stainless steels, or nickel-based alloys at high temperatures (up to 800 °C). It can also be used with all heat sources, opening up a wide array of previously unavailable markets for power production.

For these reasons the technology is quite promising.

Sandia began studying these turbines more than five years ago as part of the lab’s work on advanced nuclear reac­tors. They selected supercritical CO2 as the working fluid operating at approximately 73 bar and 33 °C at the compres­sor inlet. Under those conditions, the CO2 gas has the density of 0.6-0.7 kg per liter—nearly the density of water. Even at the turbine inlet (the hot side of the loop) the CO2 density is high, about 0.1 kg/liter.

The high density of the fluid makes the power density very high because the turbo-machinery is very small. The machine is basically a jet engine running on a hot liquid, though there is no combustion because the heat is added and removed us­ing heat exchangers. A 300 MWe S-CO2 power plant has a turbine diameter of approximately 1 meter and only needs 3 stages of turbo-machinery, while a similarly sized steam sys­tem has a diameter of around 5 meters and may take 22 to 30 blade rows of turbomachinery.

Eventually, this compactness will be a design advantage, but as Sandia develops prototypes to study the concept, it presents a distinct challenge. Early proof-of-concept demonstrations are often performed at the 1-to-20 kWe power level because many research labs have sufficient financial resources and support equipment to fabricate and operate power systems on this scale. It is quite easy to estimate the physical size of turbo-machinery if one uses the similarity principle, which guarantees that the velocity vectors of the fluid at the inlet and outlet of the compressor or turbine are the same as in well-behaved efficient turbo-machines.

Using these relationships, one finds that a 20 kWe power engine with a pressure ratio of 3.1, would ideally use a turbine that is 0.25 inch in diameter and spins at 1.5 million rpm! Its power cycle efficiency would be around 49 percent. This would be a wonderful machine indeed.

But at such small scales, parasitic losses due to friction, thermal heat flow losses due to the small size, and large by­pass flow passages caused by manufacturing tolerances will dominate the system. Fabrication would have been impos­sible until the mid-1990s when the use of five-axis computer numerically controlled machine tools became widespread.

The alternative is to pick a turbine and compressor of a size that can be fabricated. A machine with a 6-inch (outside diameter) compressor would have small parasitic losses and use bearings, seals, and other components that are widely available in industry. A supercritical carbon dioxide power system on that scale with a pressure ratio of 3.3 would run at 25,000 rpm and have a turbine that is 11 inches in its outer diameter. It would, however, produce 10 MW of electricity (enough for 8,000 homes), require about 40 MW of recu­perators, a 26 MW CO2 heater, and 15 MW of heat rejection. That’s a rather large power plant for a “proof-of-concept” experiment. The hardware alone is estimated to cost between $20 million and $30 million.

Sandia’s development approach was to compro­mise a bit on the performance, they selected a size that could fit within the Department of Energy’s nuclear energy budget. Sandia currently has two supercritical CO2 test loops. (The term “loop” derives from the shape taken by the working fluid as it completes each circuit.)

A power production loop is located at the Arvada, Colo., site of contractor Barber Nichols Inc., where it has been running and producing electricity dur­ing the developmental phase. The loop has the design capabili­ties to produce 240 kilowatts of electricity.

The turbo-alternator-com­pressor designed by Barber Nichols relies on such key en­abling technologies as gas-foil bearings (both journal and thrust), a permanent magnet motor/generator, advanced labyrinth seals, the use of seal leakage for bearing cooling, and a reduced rotor cavity region to manage and control frictional power losses.

In addition to the turbo-machinery, the other enabling tech­nology for the S-CO2 power cycle is made possible by the use of printed circuit heat exchangers that are manufactured by Heatric. Those heat exchangers are composed of sheets of steel with flow passages etched into them. The parts are diffusion bonded to provide a core-block that can have heat transfer areas exceed­ing 1,000 square meters per cubic meter. The heat exchangers are very compact and can withstand very high pressure and high temperatures. The high-temperature recuperator and gas chiller also use this technology.

Those technologies and the advanced high power switching electronics that made it possible to build a small proof-of-concept S-CO2 power loop have only recently become com­mercially available.

In this cycle the peak inlet temperature was selected to be 538 °C, and the pressure ratio was limited to 1.8. The lower pressure ratio increased the volumetric flow rate through the compressor, which increased its diameter and lowered the shaft speed to something that is within the range of gas foil bearings or magnetic bearings.

Other changes to the system were to use two 125 kWe motor/generators rather than one. This choice was made be­cause the high-speed permanent magnet generator power level was limited by rotor dynamics.

The final modification selected was the use of a re-com­pression Brayton cycle, which uses two recuperators and splits a fraction of the flow. Part of the flow is sent to a re-compressor that increases the temperature rise in the high-pressure leg of the recuperators to assure that the tempera­ture rise there nearly equals the temperature drop in the low-pressure leg. It also reduces the likelihood of a pinch point, which occurs when there is little or no temperature difference between the hot- and low-temperature legs in the recuperator, so no heat flows from one to the other. The re-compression cycle has large amounts of recuperation (note that the recuperators transfer 2.8 MW while the heater only supplies 0.78 MW).

A second loop, located at Sandia, is used to research the unusual issues of compres­sion, bearings, seals, and fric­tion that exist near the critical point, where the carbon diox­ide has the density of liquid but otherwise has many of the properties of a gas.

Immediate plans call for Sandia to continue to develop and operate the two small test loops to identify key fea­tures and technologies. Test results will illustrate the ca­pability of the concept, par­ticularly its compactness and efficiency; confirm models; and demonstrate the scalabil­ity to larger systems.

Down the line, Sandia wants to commercialize the technology. That would entail the development of an industrial demon­stration plant at 10 MW of electricity, perhaps in partnership with industry. Sandia would use or modify its loops to study the behavior of various types of components not previously tested (for example, other types of seals or bearings). Alter­natively, the Brayton loop could be reconfigured to test the behavior for other types of power cycles that may more opti­mally couple to nuclear power plants.

Brayton-cycle turbines using supercritical carbon dioxide would make a great replacement for steam-driven Rankine-cycle turbines currently deployed. Rankine-cycle turbines generally have lower efficiency, are more corrosive at high temperature, and occupy 30 times as much turbo-machinery volume because of the need for very large turbines and con­densers to handle the low-density, low-pressure steam. An S-CO2 Brayton-cycle turbine could yield 10 megawatts of electricity from a package with a volume as small as four to six cubic meters.

The turbines would have advantages in coal-fired plants. If carbon capture and sequestration become a re­quirement for coal power, a fraction of the electricity generated will be diverted to run the CCS equipment. The high efficiency that can be achieved in an advanced pressurized oxy-combustion process with pulverized coal when coupled to a supercritical CO2 power plant could make up for those losses, and thus keep zero-emission coal power plants eco­nomically competitive.

Finally, supercritical carbon dioxide Brayton-cycle turbines would be natural components of next generation nuclear power plants using liquid metal, molten salt, or high temperature gas as the coolant. In such reactors, plant efficiencies as high as 55 percent could be achieved. Recently Sandia has explored the applicability of using S-CO2 power systems with today’s fleet of light water reactors.

Replacement of the steam generators with three stages of S-CO2 inter-heaters and use of inter-cooling in the S-CO2 power system would allow a light water reactor to operate at over 30 percent efficiency with dry cooling with a compressor inlet temperature of 47 °C. Compared to power systems such as gas turbines and steam plants, the supercritical carbon dioxide Brayton system can increase the electrical power produced per unit fuel used by up to 50 percent, provided the cycle is correctly designed for the heat source and the heat source combustor/heater is efficient at getting the energy into the CO2 . In ad­dition, very compact, transportable, and affordable systems are possible due to the combination of low-to-modest turbine inlet temperatures (which enable the use of standard engi­neering materials such as stainless steel) together with high efficiency and high power density. The small overall size of the system will allow for advanced-modular manufacturing processes and a smaller footprint, both of which ought to de­crease costs.

S-CO2 power systems can use all heat sources and can operate at power levels ranging from a single megawatt to hundreds of megawatts. That flexibility should provide for applications in a variety of systems, improving the economics and marketability of the power cycle.

Sandia is not alone in this field, but are, however, among the leaders in developing this technology. They’re past the point of wondering if these power systems are going to be de­veloped and commercialized; the question is who will be first to market. Sandia and the U.S. Department of Energy have a wonderful opportunity to support the United States power needs by fostering this commercialization effort.

 

The post The Closed Loop Brayton Cycle at Sandia National Laboratory appeared first on The Energy From Thorium Foundation.

Author: "Jon Morrow" Tags: "blog, Fossil Fuels, Uncategorized"
Comments Send by mail Print  Save  Delicious 
Date: Thursday, 03 Apr 2014 18:53

generations

 

Time is running out and we hope you take the opportunity to comment on the Nuclear Regulatory Commission’s Strategic Plan.

The deadline is by tomorrow Friday April 4th.

If you have not commented here is a video that explains how……it takes just a few seconds…..

We believe one of the things to be lacking in the mission of the NRC is the lack of competition. It is true that security is mentioned in their mission but we believe that is most often interpreted as meaning military applications, such as powering nuclear submarines and aircraft carriers. The Energy From Thorium Foundation believes that to keep America’s national interest secure that we should be leading the world in the development of new nuclear technologies. This is due to economic considerations and the possibility of another country developing and economically and technologically disruptive technology before America. We believe that submissions that help to amend the strategic plan to include competition will help bolster the argument that America needs to be developing a thorium based Molten Salt Reactor and we need a regulatory environment that will allow industry to develop this technology in an accelerated time from (i.e. competetive time frame).

Copy and paste this docket number NRC-2013-0230

And then go to this website and paste the docket number in the search bar of the website and look for a comment button

www.regulations.gov

They really do listen……especially if enough people comment….so spread the word!

The post Act Now and Have Your say on the Future of America! appeared first on The Energy From Thorium Foundation.

Author: "Jon Morrow" Tags: "blog, Media/Outreach, Political, Thorium..."
Comments Send by mail Print  Save  Delicious 
Date: Thursday, 03 Apr 2014 14:46

waterworld

Waterworld!

Engineering Humanitarian Solutions with Thorium

Commentary by Jon Morrow

Astronomers, astro-biologists, and science fiction writers have long dreamt of terraforming (geo-engineering) planets and their moons — converting barren and alien wastelands into lush and productive habitats for humans and other creatures. These science fiction dreams point to the numerous advantages of distributing life to other planets, solar systems, and eventually to other galaxies, if possible. These dreams argue that such a bold agenda is actually necessary for humans to pursue, if only to ensure the survival of our species from the unavoidable death of our sun. (Our star, like any other, will go through known stages of its existence, eventually converting from hydrogen to helium as its primary fuel source, causing it to expand and destroy at least the first three planets.)

Yet, if greater terraforming/geo-engineering on other worlds holds so much promise, why are we not pursuing it more on planet Earth, for which the feasibility is so much greater, and the costs so much lower — at least, compared to such operations in space? Why are we not transforming our deserts into lush grasslands, forests, and jungles? Surely this would increase the amount of life on our planet, as well as the odds of survival of all species, including those at the brink of extinction. In addition, it would significantly cool a planet that is (in many people’s view) suffering from global warming (whether it is man made or not, even though, personally after this winter, I would enjoy some global warming), and it would absorb a huge amount of carbon, which is the fundamental building block of all life on Earth.

Critics question where we could possibly obtain the fresh water and minerals needed for growing vast tracts of greenery.

The solution: (you guessed it, if you are a regular to this website) a fleet of MSRs (Molten Salt Reactors)

In 2050 there is expected to be about 9.3 billion people sharing our planets resources. Today the world is facing the intertwined challenges of food, water, energy security, and shifting climate problems that are driving traditional agricultural areas to new destinations causing economic problems from drought and famine in some areas, to crop damage from too much rainfall in other areas. None of these challenges are new, and they are not without solutions. At the same time it is clear that we cannot afford a response to one challenge that comes at the expense of another. The greatest challenges of our time are closely interlinked and so solutions will tend to answer many problems.

Today, more than 800 million people are “food insecure”, meaning that they either starve or do not know where their next meal will come from. This situation brings with it large social, humanitarian, and economic consequences. Rising populations by 2050 and third world countries like China and India reaching for first world prosperity status are expected to call for 70 percent more food production globally, and up to 100 percent more food in developing countries, relative to today. Experts agree that it is possible to achieve the increases in food production necessary to feed a population of 9.3 billion in 2050, but only if sufficient and timely investments are undertaken and policies to increase agricultural production are put in place.

Gross investment requirements between 2007 and 2050 for irrigation development and management are estimated at almost US$1 trillion. Moreover land protection and development, soil conservation and flood control will require around US$160 billion, according to the Food and Agriculture Organization of the United Nations.

The IEA’s Energy Technology Perspectives 2010 presents a baseline scenario assuming no new energy policies. The scenario predicts that primary energy use will rise by 84% by 2050 – and energy-related emissions roughly double – by 2050. Examples of air pollution in China leave little room for doubt that traditional sources of energy are not a solution for 2050 and beyond.

A thorium based MSR revolution has the potential to bring about substantial benefits not just for the environment, but also in enhanced energy security, and accelerated economic development.

 

 The Water Problem

Water scarcity already affects a large portion of the global population. And the situation is not expected to improve any time soon: according to UNEP water use for crop irrigation must double by 2050 to meet the Millennium Development Goal on hunger.

Imbalances between availability and demand, degradation of ground- and surface water quality, as well as escalating regional and international competition for water resources are among the key issues that must be addressed.

The livelihoods of more than one billion people in some 100 countries are threatened by drought and more permanent desertification. It is estimated that desertification and land degradation represent an income loss of US$42 billion per year. Further, the barren lands lost annually could have provided 20 million tons of grain.

A LFTR (Liquid Fluoride Thorium Reactor), a type of Molten Salt Reactor, could very affordably desalinate massive amounts of sea-water and pump this water vast distances, very economically.

It is estimated that one-fifth of the world’s population does not have access to safe drinking water, and that this proportion will increase due to population growth relative to water resources. The worst-affected areas are the arid and semiarid regions of Asia and North Africa. A UNESCO report in 2002 said that the freshwater shortfall worldwide was then running at some 230 billion m3/yr and would rise to 2,000 billion m3/yr by 2025. Wars over access to water, not simply energy and mineral resources, are conceivable.

Fresh water is a major priority in sustainable development and a major component in providing prosperity. Where it cannot be obtained from streams and aquifers, desalination of seawater or mineralised groundwater is required. An IAEA study in 2006 showed that 2.3 billion people live in water-stressed areas, 1.7 billion of them having access to less than 1000 m3 of potable water per year. With population growth, these figures will increase substantially.

Water can be easily stored, while electricity at utility scale cannot. This suggests two synergies with base-load power generation for electrically-driven desalination: undertaking it mainly in off-peak times of the day and week, and load-shedding in unusually high peak times.

Most desalination today uses fossil fuels, and thus contributes to increased levels of greenhouse gases and potentially to global warming. Total world capacity in mid-2012 was 80 million m³/day (29,200 GL/yr) of potable water, in some 15,000 plants. A majority of these are in the Middle East and north Africa. The largest plant – the $3.8 billion Al-Jubail 2 in Saudi Arabia – has 948,000 m3/day (346 GL/yr) MED-TVC capacity, plus 2745 MWe power generation using gas turbines. The Saudi Saline Water Conversion Corporation (SWCC) takes about 62% of output to supply Riyadh. Two-thirds of the world capacity is processing seawater, and one third uses brackish artesian water. New plants with total capacity of 6 million m3/d are expected to come on line in 2013, according to the International Desalination Association.

The major technology in use and being built today is reverse osmosis (RO) driven by electric pumps which pressurise water and force it through a membrane against its osmotic pressure*. This accounted for 60% of 2011 world capacity of desalinated water. A thermal process, multi-stage flash (MSF) distillation process using steam, was earlier prominent and it is capable of using waste heat from power plants. It accounted for 26% of capacity in 2011. With brackish water, RO is much more cost-effective, though MSF gives purer water than RO. A minority of plants use multiple-effect distillation (MED – 8% of world capacity) or multi-effect vapour compression (MVC) or a combination of these, eg MED-TVC with thermal vapour compression. MSF-RO hybrid plants exploit the best features of each technology for different quality products.

* About 27 Bar, 2700 kPa. Therefore RO needs compression of much more than this.

Desalination is energy-intensive. Reverse Osmosis needs up to 6 kWh of electricity per cubic metre of water (depending on both process and its original salt content), though the latest RO plants such as in Perth, Western Australia, use 3.5 kWh/m3, or 4 kWh/m3 including pumping for distribution. Hence 1 MWe continuous will produce about 4,000 to 6,000 m3 per day from seawater. MSF and MED require heat at 70-130°C and use 25-200 kWh/m³, though a newer version of MED (MED-MVC) is reported at 10 kWh/m3 and competitive with RO. A variety of low-temperature and waste heat sources may be used, including solar energy, so the above kilowatt-hour figures are not properly comparable. For brackish water and reclamation of municipal wastewater RO requires only about 1 kWh/m3. The choice of process generally depends on the relative economic values of fresh water and particular fuels, and whether cogeneration is a possibility.

Forward osmosis (FO) may be used in conjunction with a subsequent process for desalination. The FO draws water through a membrane from a feed solution into a more concentrated draw solution, which is then desalinated without the problems of fouling, such as often encountered with simple RO. FO plants operate in Gibraltar and Oman.

Some 10% of Israel’s water is desalinated, and one large RO plant provides water at 50 cents per cubic metre. It claimed to have the world’s largest seawater RO plant as of late 2013, at Soreq. Malta gets two-thirds of its potable water from RO, and this takes 4% of its electricity supply. Singapore in 2005 commissioned a large RO seawater desal plant supplying 136,000 m3/day – 10% of needs, at 49 cents US per cubic metre, and in 2013 commissioned a 318,500 m3/d RO plant on a build-own-operate basis, costing US$ 700 million, to provide water at US 36 cents/m3. Desalinated seawater will now provide 25% of Singapore’s water, as one of the island state’s Four National Taps, along with local catchment water, imported water, and NEWater, Singapore’s own recycled wastewater.

Saudi Arabia in 2011 obtained 3.3 million m3/d from 27 government-owned (SWCC) seawater desalination plants, 70% of the country’s requirements. Twelve plants, accounting for most of production, use multi-stage flash distillation (MSF) and 7 plants use multi-effect distillation (MED), in both cases the plants are integrated with power plants (cogeneration plants), using steam from the power generation as a source of energy for desalination. Eight plants are single-purpose plants that use reverse osmosis (RO) technology and power from the grid. The UAE is heavily dependent on seawater desalination, much of it with cogeneration plants. Algeria in mid 2013 had 2.1 million m3/d capacity and another 400,000 m3/d is envisaged.

In February 2012 China’s State Council announced that it aimed to have 2.2 to 2.6 million m3/day seawater desalination capacity operating by 2015.

Small and medium sized nuclear reactors are suitable for desalination, often with cogeneration of electricity using low-pressure steam from the turbine and hot seawater feed from the final cooling system. The main opportunities for nuclear plants have been identified as the 80-100,000 m³/day and 200-500,000 m³/day ranges. US Navy nuclear powered aircraft carriers reportedly desalinate 1500 m3/d each for use onboard.

A 2006 IAEA report based on country case studies showed that costs would be in the range ($US) 50 to 94 cents/m3 for RO, 60 to 96 c/m3 for MED and $1.18 to 1.48/m3 for MSF processes, with marked economies of scale. Nuclear power was very competitive at today’s gas and oil prices. A French study for Tunisia compared four nuclear power options with combined cycle gas turbine and found that nuclear desalination costs were about half those of the gas plant for MED technology and about one third less for RO. With all energy sources, desalination costs with RO were lower than MED costs.

The Kwinana desalination plant near Perth, Western Australia, has been running since early 2007 and produces about 140,000 m3/day (45 GL/yr) of potable water, requiring 24 MWe of power for this, hence 576,000 kWh/day, hence 4.1 kWh/m3 overall, and about 3.7 kWh/m3 across the membranes. The plant has pre-treatment, then 12 seawater RO trains with capacity of 160,000 m3/day which feed six secondary trains producing 144,000 m3/day of water with 50 mg/L total dissolved solids. The cost is estimated at A$ 1.20/m3. Discharge flow is about 7% salt. Future WA desalination plants will have more sophisticated pre-treatment to increase efficiency. In August 2011 the state government decided to double the size of its new Southern Water Desal Plant at Binningup plant near Perth to 100 GL/yr, taking the cost to about $1.45 billion. Stage 1 of 50 GL/yr was within the A$ 955 million budget.

At the April 2010 Global Water Summit in Paris, the prospect of desalination plants being co-located with nuclear power plants was supported by leading international water experts.

Complementary wastewater treatment for irrigation

In the Middle East, a major requirement is for irrigation water for crops and landscapes. This need not be potable quality, but must be treated and with reasonably low dissolved solids.

In Oman, the 76,000 m3/day first stage of a submerged membrane bioreactor (SMBR) desalination plant was opened in 2011. Eventual plant capacity will be 220,000 m3/day. This is a low-cost wastewater treatment plant using both physical and biological processes and which produces effluent of high-enough quality for some domestic uses or reinjection into aquifers.

Desalination: nuclear experience

The feasibility of integrated nuclear desalination plants has been proven with over 150 reactor-years of experience, chiefly in Kazakhstan, India and Japan. Large-scale deployment of nuclear desalination on a commercial basis will depend primarily on economic factors. Indicative costs are US$ 70-90 cents per cubic metre, much the same as fossil-fuelled plants in the same areas.

One obvious strategy is to use power reactors which run at full capacity, but with all the electricity applied to meeting grid load when that is high and part of it to drive pumps for RO desalination when the grid demand is low.

The BN-350 fast reactor at Aktau, in Kazakhstan, successfully supplied up to 135 MWe of electric power while producing 80,000 m³/day of potable water over some 27 years, about 60% of its power being used for heat and desalination. The plant was designed as 1000 MWt but never operated at more than 750 MWt, but it established the feasibility and reliability of such cogeneration plants. (In fact, oil/gas boilers were used in conjunction with it, and total desalination capacity through ten MED units was 120,000 m³/day.)

In Japan, some ten desalination facilities linked to pressurised water reactors operating for electricity production yield some 14,000 m³/day of potable water, and over 100 reactor-years of experience have accrued. MSF was initially employed, but MED and RO have been found more efficient there. The water is used for the reactors’ own cooling systems.

India has been engaged in desalination research since the 1970s. In 2002 a demonstration plant coupled to twin 170 MWe nuclear power reactors (PHWR) was set up at the Madras Atomic Power Station, Kalpakkam, in southeast India. This hybrid Nuclear Desalination Demonstration Project (NDDP) comprises a reverse osmosis (RO) unit with 1800 m3/day capacity and a multi-stage flash (MSF) plant unit of 4500 m³/day costing about 25% more, plus a recently-added barge-mounted RO unit. This is the largest nuclear desalination plant based on hybrid MSF-RO technology using low-pressure steam and seawater from a nuclear power station. They incur a 4 MWe loss in power from the plant.

In 2009 a 10,200 m3/day MVC (mechanical vapour compression) plant was set up at Kudankulam to supply fresh water for the new plant. It has four stages in each of four streams. An RO plant there supplied the plant’s township initially. The full MVC plant is being commissioned in mid 2012, with quoted capacity of 7200 m3/day to supply the plant’s primary and secondary coolant and the local town. Cost is quoted at INR 0.05 per litre (USD 0.9/m3).

A low temperature (LTE) nuclear desalination plant uses waste heat from the nuclear research reactor at Trombay has operated since about 2004 to supply make-up water in the reactor.

Pakistan in 2010 commissioned a 4800 m3/day MED desalination plant, coupled to the Karachi Nuclear Power Plant (KANUPP, a 125 MWe PHWR) near Karachi. It has been operating a 454 m3/day RO plant for its own use.

China General Nuclear Power (CGN) has commissioned a 10,080 m3/day seawater desalination plant using waste heat to provide cooling water at its new Hongyanhe project at Dalian in the northeast Liaoning province.

Much relevant experience comes from nuclear plants in Russia, Eastern Europe and Canada where district heating is a by-product.

Large-scale deployment of nuclear desalination on a commercial basis will depend primarily on economic factors. The UN’s International Atomic Energy Agency (IAEA) is fostering research and collaboration on the issue.

Small nuclear reactors suitable for desalination

SMART: South Korea has developed a small nuclear reactor design for cogeneration of electricity and potable water. The 330 MWt SMART reactor (an integral PWR) has a long design life and needs refuelling only every 3 years. The main concept has the SMART reactor coupled to four MED units, each with thermal-vapour compressor (MED-TVC) and producing total 40,000 m3/day, with 90 MWe.

CAREM: Argentina has designed an integral 100 MWt PWR suitable for cogeneration or desalination alone, and a prototype in being built next to Atucha. A larger version is envisaged, which may be built in Saudi Arabia.

NHR-200: China’s INET has developed this, based on a 5 MW pilot plant.

Floating nuclear power plant (FNPP) from Russia, with two KLT-40S reactors derived from Russian icebreakers, or other designs for desalination. (If primarily for desalination the twin KLT-40 set-up is known as APVS-80.) ATETs-80 is a twin-reactor cogeneration unit using KLT-40 and may be floating or land-based, producing 85 MWe plus 120,000 m3/day of potable water. The small ABV-6 reactor is 38 MW thermal, and a pair mounted on a 97-metre barge is known as Volnolom floating NPP, producing 12 MWe plus 40,000 m3/day of potable water by reverse osmosis. A larger concept has two VBER-300 reactors in the central pontoon of a 170 m long barge, with ancillary equipment on two side pontoons, the whole vessel being 49,000 dwt. The plant is designed to be overhauled every 20 years and have a service life of 60 years. Another design, PAES-150, has a single VBER-300 unit on a 25,000 dwt catamaran barge.

 

The Economics and Stability of Water derived from Thorium Power

As an economist, I look at desalination plants that will operate off of natural gas and see potential calamity in our future. Currently, fracking technology has allowed America and other countries to realize an abundance of natural gas, and due to the “law of supply and demand”, natural gas is very cheap right now. Many estimates have put America’s natural gas reserves at between 100 to 300 years, but that was based on the consumption levels of natural gas at the time. When natural gas became much cheaper and we began using more of it and we also realized we could export it and make a profit on it, guess what? It doesn’t last nearly as long. With a much greater use of natural gas and greater and greater exportation expected, the cost is set to rise significantly in 2016 and even more significantly after 2018, and reserves will dwindle in an accelerated fashion. Many experts I talk to believe that to 100 to 300 year natural gas supply to effectively be a 30 to 50 year supply. While the Carlsbad desalination project may seem to be economical now ($1Billion price tag), what happens when the natural gas cycle goes bust in the boom and bust cycle? Water rates will soar! So will electricity rates. But, thorium based MSRs will have more stability in price over a much longer time frame and at a much better price, and dare I say, without any CO2 issues many in California are concerned about.

Additionally, a LFTR can be used to turn trash into fuel when coupled with a technology such as a Plasma Gasifier. Eventually, LFTR can also provide a bridge to produce liquid synthetic transportation fuels from seawater.

With billions of years of supply of the element thorium can I ask again, why aren’t we doing this?

The post Waterworld! Terraforming Terra Firma with Thorium appeared first on The Energy From Thorium Foundation.

Author: "Jon Morrow" Tags: "blog, In The News, Political, Strategy, ..."
Comments Send by mail Print  Save  Delicious 
Date: Wednesday, 02 Apr 2014 15:26

Nest pas2

Ford Vs. Cadillac and Thorium N’est-ce Pas?

Commentary by Jon Morrow

One of my extracurricular activities other than working for the EFTF (Energy From Thorium Foundation) is helping to run a pretty large focus group that helps politicians and corporations make better marketing decisions. What I like about this is that I can learn a lot about the perceptions and thinking of the public on a whole range of issues.

Our focus group was hired to determine the public acceptance of two different automotive commercials.

 

Ford

 

Versus

 

 

Cadillac

We had a public acceptance of 30% for the Ford commercial and 70% acceptance for the Cadillac commercial. Our focus group is a statistical demographic cross section of the United States as taken by the last census, and has been proven to be pretty darn accurate.

 

Since we finished early I was able to interject some Thorium based material to the focus group. I had them watch Kirk’s TED talks video

 Thorium base Molten Salt Reactors

 

What amazed me is that the exact same 30% that like the Ford commercial and disliked the Cadillac commercial for its perceived materialism also, when polled, did not like the Kirk Sorensen’s presentation. When interacting with this 30%, any hypothetical nuclear energy source that was totally safe and clean, was not accepted. Why was that? The reason given after lengthy discussions was that this type of technology lends itself to “more”, to materialism, and to commercialism. The 30% do not want more for the future they want less. Some even wanted many less people to inhabit the earth than what are currently here now.

Nest Pas

I went a bit further in polling the focus group and found that most of the 30% group believes we need to live a much more agrarian lifestyle, eat organic only foods, see capitalism as a hindrance to prosperity, believes America needs to have a reduced role in the world, and corporations should never be trusted.

Other metrics included in the group that liked the Ford commercial consider themselves political activist, are concerned about he environment and global warming, were all younger than 35 years of age, and absolutely none of them voted in the last election.

In the Cadillac group the average age was 47 years old and there was no one younger than 35 years of age. A vast majority of this group voted in the last election, a vast majority do not consider themselves political activists, they generally like red meat, processed foods, and a GMO designation did not phase them in the least. Only about 10% of this group was distrustful of corporations and 100% of this group believes that capitalism produces prosperity.

I thought the results of this 60 person focus group that pulls from a pool of over 1,200 persons was interesting in that a division in America, or at least Northeastern Ohio, can be determined by a Ford and a Cadillac commercial.

The post Ford Vs. Cadillac and Thorium N’est-ce Pas? appeared first on The Energy From Thorium Foundation.

Author: "Jon Morrow" Tags: "blog, In The News, Media/Outreach, Thori..."
Comments Send by mail Print  Save  Delicious 
Date: Tuesday, 01 Apr 2014 20:12

roosevelt

 

 

Commentary by Jon Morrow

2050: Fearing Fear Itself

 

In the thorium advocacy community, we have all heard the stories as to why “they” will never let thorium-based molten salt reactors (like a LFTR Liquid Fluoride Thorium Reactor) be built.

Many of us can never identify just who “they” are when these stories are relayed to us.

So many have heard the plight of developing a thorium based MSRs (Molten Salt Reactors) and they just assume some nefarious corporation with its own evil profit motive is preventing the development of this technology. Developing MSRs just makes so much common sense to so many of us that it is hard to conceive as to why we (Americans) are not running at full throttle to develop this technology with so much potential.

The reality is though, that there is not any coordinated effort by corporations acting in their own interest trying to prevent the development of thorium based MSRs. Ironically, it is not “they” it is “us!” It is the orchestrated misperception of a very small and virulently anti-nuclear (and misguided in my opinion) portion of the American public that has prevented the development of new nuclear technologies in America. To reiterate with clarity, it is not a majority of the public that misunderstands nuclear technology, most polls show that it is a very vocal and small minority of Americans. Yet, the perception persist that the American public is anti-nuclear.

 

The only thing we have to fear is fear itself!

If you fear that we will be lacking many vital resources by the year 2050, you are not alone. The estimated 9.3 billion people inhabiting the earth at that time will be very uncomfortable if new and alternate sources of energy such as LFTRs (Liquid Fluoride Thorium Reactors) are not developed to produce vital resources (such as water, clean energy, and fertilizers for food production). Irresponsible fear-based organizations (Physicians for Social Responsibility, Beyond Nuclear, and Physicians for the Prevention of Nuclear War) propagate doubt and fear in the mind of the public in pursuing any nuclear technology. These organizations and many like them make very passionate arguments that have little to do with evidence that is backed up with science. If we want to make 2050 a much more comfortable place we need to stop worrying about the chicken littles of the world using their megaphones to tell everyone the sky is falling on nuclear energy, because (those of us that believe in unbiased science based outcomes) the science shows the sky is not falling on nuclear energy. To politicians however, the perception still exists that the American public is anti-nuclear because anti-nuclear advocates are so vocal and visible. The old axiom is true the squeaky wheel gets the grease.

Politicians are reluctant to touch the nuclear energy topic because it is a perceived hot potato. This means it is very hard to get any politician to take up regulatory reforms concerning nuclear energy as they fear having protesters on the 5 o’clock news at their office. Politicians, even the very educated ones, fear the topic of nuclear energy, because of the very vocal few who oppose nuclear energy.

To those ends, it is very hard to get any politician to support any nuclear technology when natural gas is so plentiful and available and not such a divisive issue.

It is not the big oil, big natural gas, big coal, big wind, or big solar companies standing in the way of MSR development, it is just a tiny, but very vocal portion of the public (that is perceived to be larger than what they are).

 Media Bias

Media bias helps Washington politicians and the general public form opinions about nuclear energy. During the Fukushima crisis, ratings for news media increased dramatically as everyone was glued to their television sets or computer screens worried about when the cloud of radiation would affect them. Many Americans do not realize that the Tsunami caused all the death and destruction and not the nuclear power plant. While the perceived cloud of death never made it to our shores in America (or anywhere else for that matter), advertising rates and Nielsen ratings were raised and “big media” reaped the rewards from paying advertisers.

Because nuclear energy and radiation is so misunderstood (due to a poor education system and irresponsible organizations with an agenda) it is easy to make them into the boogey man and get lots of attention (because many know no better). Add to this, the conspiracy theory driven paranoia of the public escalated by those that are entertained by manipulating people with conspiracy theory based websites – and we have a recipe to produce a regulatory environment based upon the unwarranted fears of the public.

 What is the Answer?

Education, education, and more education is needed to break the cycle of fear. Perpetuating conspiracy theories and blaming the non-development of thorium on big corporations, big banks, and other big energy companies needs to stop for any serious grassroots education efforts. Thorium advocates also need to raise their profile by going to mainstream websites and commenting intelligently and posting links to where the public can go to find more information.

We can break the cycle of fear with the public through and we can change public perception by being a vocal advocate and educating our legislators and regulators. If we do not speak up in favor of educated policy then we let uneducated anti-nuclear advocates win.

The Mission: The Nuclear Regulatory Commission licenses and regulates the Nation’s civilian use of radioactive materials to protect public health and safety, promote the common defense and security, and protect the environment.

I would challenge this audience to challenge the mission statement of the NRC to include “to provide a competitive regulatory environment that will allow America to preserve its leadership in nuclear energy technology”

NRC

From the Nuclear Regulatory Commission…..

 

The NRC Wants to Put the “U” in Strategic Plan

 

Well, we do realize there is no “u” in “strategic plan,” but the NRC is drafting its 2014-2018 road map and we want your input before we finalize it.

The plan is updated every four years and is used to guide our work. You may not be aware that all of NRC’s business lines (operating reactors, new reactors, fuel facilities, nuclear materials, etc.) link their annual plans to the strategic plan and all our senior executive performance plans are linked to it as well.

If you’re familiar with our previous Strategic Plan, you’ll notice our mission and strategic goals remain basically unchanged, but the new plan does contain some new components. For example, a vision statement has been added to emphasize the importance, not only of what we achieve, but of how we regulate And there are now three strategic objectives, one for safety and two for security.

Each objective has associated strategies and key activities that will be used to achieve them. For example, this is one of the strategies for the safety objective along with three key activities:

Ensure the NRC’s readiness to respond to incidents and emergencies involving NRC-licensed facilities and radioactive materials, and other events of domestic and international interest.

·        Use operational experience and lessons learned from emergency-preparedness exercises to inform the regulatory activities.

·        Coordinate with federal, state, local, and tribal partners to strengthen national readiness and response capabilities.

·        Employ outreach before, during, and after emergency-preparedness exercises, and increase collaboration and sharing of best practices and lessons learned after emergency-preparedness exercises and incidents.

The goal of the comment period is to take advantage of the collective knowledge of the public – there is a “u” in public, after all — to make sure our plan is as good as it can be.

Why should you take the time to comment? Well, perhaps you are aware of a key external factor that we have missed that could affect the strategies and activities we have planned. Or maybe you have ideas for additional strategies or activities we need to focus on to achieve one of our objectives. This is your opportunity to weigh in and tell us if we are addressing the issues of importance to you.

All comments will be reviewed and incorporated, as appropriate, into a revised plan. The disposition of substantive comments will be included in a Commission paper transmitting the resulting plan to the Commission for their final review and approval.

Please submit your comments online through the federal government’s rulemaking website, www.regulations.gov using Docket ID NRC-2013-0230; or by mail to Cindy Bladey, Chief, Rules, Announcements, and Directives Branch, Office of Administration, Mail Stop:  3WFN-06-44M, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001. The comment period is coming quickly. It closes on 04/04/2014. Comments on this blog post cannot be considered, so please use the official channels. More information is also available in the Federal Register Notice.

We look forward to hearing from you soon.

The post 2050: Fearing Fear Itself appeared first on The Energy From Thorium Foundation.

Author: "Jon Morrow" Tags: "blog, Media/Outreach, Strategy, Uncatego..."
Comments Send by mail Print  Save  Delicious 
Date: Friday, 28 Mar 2014 17:40

Commentary by Jon Morrow

Plasma Header-1

For those of us interested in the environment, a large, visible, and costly concern should be landfills and waste management.

A modern society produces millions of tons of garbage and the age-old technology of burying trash is still with us in the year 2014. While we have made vast strides in recycling, a component that hampers better recycling efforts, is the economic viability of recycling itself.

Mandates to recycle work to an extent, but the public in general does not want to pay more for a product just because it is recycled. To make recycling more cost effective and thereby more accepted by the public, recycling needs to be easy, convenient, and cost effective.

Thorium based energy produced from a LFTR (Liquid Fluoride Thorium Reactor), that can produce electricity at $.02 per KWH, could be the missing link to greater participation in recycling and vastly reduce the volume of trash that is placed in landfills.

Many people dislike taking the time to sort out their recyclables and tend to see their time as being too valuable to spend on such a mundane task. Efforts to sort recyclables out of the trash are generally too expensive to be cost effective.

 

 

But, what would happen if we could recycle almost everything that went to the landfill and it did not need to be sorted? Better yet, what if we could include sewage into this waste stream?

 

Westinghouse Plasma Corporation and its Canadian affiliate Alter NRG have developed and refined a technology that converts a majority of our modern day wastes into energy and construction materials with plasma gasification technology. In places where landfilling is very expensive plasma gasification makes sense because current plasma gasification costs are somewhat high. These costs are high due to plasma gasification using an abundance of electricity.

Plasma gasification is an emerging technology in America, which can process landfill waste and convert carbon-based materials into fuels. It can form an integral component in a system to achieve zero-waste and produce transportation fuels.

Plasma arc processing has been used for years to treat hazardous waste, such as incinerator ash and chemical weapons, and convert them into non-hazardous slag.

 

Utilizing this technology to convert municipal solid waste (MSW) to energy is still young, but it has great potential to operate more efficiently than other pyrolysis and combustion systems due to its high temperature, heat density, and nearly complete conversion of carbon-based materials to syngas, and non-organics to slag. Plasma gasification uses an immense amount of electricity and the more affordable the energy source for powering the plasma gasifier is the more economically attractive it is to recycle a greater amount of landfill waste.

 

 

  • Syngas is a simple fuel gas comprised of carbon monoxide and hydrogen that can be combusted directly or refined into higher-grade fuels and chemicals such as synthetic gasoline.

 

  • Slag is a glass-like substance, which is the cooled remains of the melted waste; it is tightly bound, safe and suitable for use as a construction material.

 

Plasma gasification is a multi-stage process which starts with feed inputs ranging from waste – to coal – to plant matter, and can safely include many types of hazardous wastes.

The first step is to process the feedstock to make it uniform and dry, and have the valuable recyclables sorted out that are economic to sort out. The second step is gasification, where extreme heat from the plasma torches is applied inside a sealed, air-controlled reactor. During gasification, carbon-based materials break down into gases and the inorganic materials melt into liquid slag, which is poured off and cooled. The heat causes hazards and poisons to be completely destroyed. The third stage is gas cleanup and heat recovery, where the gases are scrubbed of impurities to form clean fuel, and heat exchangers recycle the heat back into the system as steam. The final stage is fuel production the output can range from electricity to a variety of much more valuable transportation fuels as well as chemicals, hydrogen and polymers.

Gasification has a long history in industry where it has been used to refine coal and biomass into a variety of liquid fuels, gases and chemicals. Modern clean coal plants are all gasifiers, and so were the earliest 19th century municipal light and power systems.

Plasma gasification refers to the use of plasma torches as the heat source, as opposed to conventional fires and furnaces. Plasma torches have the advantage of being one of the most intense heat sources available while being relatively simple to operate.

Plasma is a superheated column of electrically conductive gas. In nature, plasma is found in lightning and on the surface of the sun. Plasma torches burn at temperatures approaching 5500ºC (10,000˚F) and can reliably destroy any materials found on earth – with the exception of nuclear waste.

Plasma torches are used in foundries to melt and cut metals. When utilized for waste treatment, plasma torches are very efficient at causing organic and carbonaceous materials to vaporize into gas. Non-organic materials are melted and cool into a vitrified glass slag.

Waste gasification typically operates at temperatures of 1500˚C (2700˚F), and at those temperatures materials are subject to a process called molecular disassociation, meaning their molecular bonds are broken down and in the process all toxins and organic poisons are destroyed. Plasma torches have been used for many years to destroy chemical weapons and toxic wastes, like printed circuit boards (PCBs) and asbestos, but it is only recently that these processes have been optimized for energy capture and fuel production.

America’s Westinghouse Corporation began building plasma torches with NASA for the Apollo Space Program in the 1960s to test the heat shields for spacecraft at 5500˚C. In the late 1990s, the first pilot-scale plasma gasification projects were built in Japan to convert MSW, sewage sludge, and auto-shredder residue to energy. The Japanese pilot plants have been successful, and commercial-scale projects are under development now in Canada and other countries, by companies such as Alter NRG, from Alberta, Canada.

 

Economics

 

The economics of MSW plasma gasification are favorable, although complex. Waste gasification facilities get paid for their intake of waste, via tipping fees. The system can then earn revenues from the sale of power produced or fuel produced. Electricity is the primary product today, but liquid fuels, hydrogen, and synthetic natural gas are all possibilities for the future.

Instead of using the syngas from the plasma gasification process to power the generators that power the plasma torches, a LFTR (Liquid Fluoride Thorium Reactor) could much more economically power this process. The resulting slag can be used as a construction material to build public infrastructure and can even be transformed into a very high-grade and inexpensive insulation for making homes more energy efficient.

This “waste-to-fuel” scenario could allow a LFTR to power a municipality by day and convert garbage to fuel at night. This would possibly allow a LFTR to operate at its highest efficiency.

 

 

Conclusions

 

The time is becoming ripe for economical waste gasification. The world is facing profound problems in the search for new sources of energy, in addition to facing on-going environmental degradation problems with landfills.

 

Plasma gasification of waste can be part of the solution to both problems. Using toxic waste materials and general municipal waste and sewage, as feedstocks for producing fuels, transforms liabilities into assets. As a municipal or publicly funded operation, a waste gasification plant can help balance budgets and provide a hedge against future increases in energy prices and disposal costs. The complexity and expense make plasma gasification a challenge for private investors and for municipalities and a LFTR would reduce these challenges.

The post Energy From Thorium: Taking out the Trash! appeared first on The Energy From Thorium Foundation.

Author: "Jon Morrow" Tags: "blog, Blog-Related, In The News, Safety,..."
Comments Send by mail Print  Save  Delicious 
Date: Monday, 24 Mar 2014 12:54
energy hype
-commentary by Jon Morrow
Many people draw their own conclusions about energy  -from other peoples conclusions of energy  -and many of those people formed their opinions based on faulty information or information relayed to them with an agenda. Many conclusions formed upon energy are normally formed from a very narrow set of experiences and of only getting one side of the story. Much information relied upon is heard or gleaned from a source or person of respect and does not come from unbiased scientist, that are not politically driven, that actually use scientific principles to form their conclusions.
The public does not know which information resources to trust and so an aunt or an uncle, or even perhaps a news broadcaster, a celebrity, or a favored website or book has helped you form your own personal world view of energy. Because there is so much money involved in the energy world, many people distrust many sources of information because they perceive there to be a conflict of interest of those that report on energy.
arm-leg-firstborn-high-gas-prices
My own original world view of energy was formed in the 1970′s and in the early 1980′s by my father and by Walter Cronkite. Our family lived about 40 miles away from Davis Besse nuclear power plant at the time. I remember vividly how there was a fear that if anything went wrong at Davis Besse, a nuclear explosion would kill everyone within a sixty mile radius and a huge mushroom cloud of radiation would form and lay waste to many surrounding states. People would be vaporized and the zombie apocalypse as seen in many “B” movies would come to fruition. Nuclear energy in our household had a bad rap simply because we believed the story that was sown by special interest groups.
The China Syndrome was a very real concern for us and Jane Fonda and Jack Lemon would not lie to us just to sell movie tickets…..or so my mom and dad thought.
Why did my father have a negative view of nuclear energy? He worked at a company that had a lot of people that worked there that moved from Kentucky to find jobs in Ohio. These Kentuckians had friends and relatives that worked in the coal industry in Kentucky and they did not exactly like the hype of “electricity too cheap to meter” coming from nuclear energy advocates. So rumors, myths, falsehoods, and innuendos developed to demonize nuclear energy and couple that with Walter Cronkite talking about nuclear missiles on television and you very easily could see how I was influenced to despise nuclear energy.
Oil and gas at the time seemed to be ruled by very evil regimes in the Middle East and Jimmy Carter had convinced a generation of Americans that we needed more wind and solar power, little cars, and we all needed to wear more sweaters! Global cooling, the best experts in the world said, was surely going to kill us all and we all should prepare for the next ice age. It sounded reasonable and plausible at the time. Of course, it was all man’s fault, we put up too much pollution into the atmosphere from our consumer driven lifestyles and that pollution was reflecting the sunlight back into space and cooling the earth. Why did we not realize this earlier that we were killing ourselves off like the dinosaurs (the air pollution from a meteor hitting the earth and blocking out the sunlight that caused an ice age) because of our capitalist ways. Add to this, that at best we only had 5 to 6 years of oil left and we should get used to riding our bicycles. In the 1970′s, the American lifestyle was coming to an abrupt halt. Of course, I had a banana seat purple 3 speed Schwinn bicycle and an Evil Knievel helmet so I was prepared!
Not to say that we were not polluting the environment and that polluting the environment is okay. But, the science was not sound then, and as a person growing up fearing the next ice age, I am understandably a bit skeptical about the science and hoopla being presented now about global warming.
In the 1980′s, well, all that global cooling nonsense coming from our schools and government changed dramatically and it changed for the better.
Regulations were relaxed or eliminated and all sources of energy that we had ample supply of came down in cost.
The reality of an unexpected warming trend helped to dispel many of the politically generated energy myths (like global cooling) that were holding American businesses back due to a regulatory environment built upon faulty science. Global Cooling and windmills, solar panels, and that three speed Schwinn of mine soon became a distant memory. The muscle car was reborn, gasoline became so cheap that buzzing the ave became a favorite past time of teenagers, and the Gremlin and the Pacer (thankfully) were retired from the annals of automotive history, OPEC was broken, and fuel prices fell, and the once needed saviors, windmills and solar panels, became a distant memory as well.
America, in a very real sense got back to being America and unleashed its industrial might. We restored the Statue of Liberty to her former glory along with the Ford Mustang, and the space shuttle became a symbol of American strength, innovation, and accomplishment. Americans unabashedly, were not ashamed of having more.
All that started to change when 4 major hurricanes hit Florida in 2004 and 3 major hurricanes made landfall with the Southeastern United States in 2005, including hurricane Katrina. I almost started believing the hype but as quickly as these storms materialized, they vanished and Florida has not had a major hurricane hit them since 2005.
Many in the environmental protection community predicted worse and worse storms based upon supposedly sound science. When those storms never materialized again, I was convinced the experts were wrong.
When Fukushima happened a few years back, there was a part of me that remembered those old predictions of thousands being vaporized and millions dying within the ensuing months. Could Helen Caldicott and Ed Asner be correct?
What would happen?
Would I lose my new world view and revert to the world view of energy I formed as a child or keep the one I formed as a teenager?
Reality would be the decision maker and not hype or propaganda.
Fukushima was every bit as major of a disaster as I was warned about as a child, and you know what? No one was vaporized at ground zero and no one has died from radiation poisoning. The BS fed to me as a child was not true even as bad as the media has tried to make the Fukushima disaster seem. The tsunami is to be more feared than nuclear energy.
The 1970′s mini ice age never developed as experts predicted and America still has plenty of oil and gas. So, like a man-made global warming denier, I do not believe the politically motivated science coming from the so-called world experts. I do believe though, our energy sources have problems and if we intend to bring the entire world up to an American standard of living or better, we are going to have serious problems. China’s pollution problems are a small glimpse of our future if we do not work to change it.
The doom and gloom scenarios that special interests have painted, have not materialized and likely never will, if the free market is allowed to develop and innovate in the energy sector. This doom and gloom talk sells lots of newspapers, makes great movie fodder, and gets academia lots of research money. But rarely, do any of the predictions come true. The hysteria and hype merely divides Americans.
Even though these end of world prophecies (like global cooling) have never come to pass I do see a whole new generation of Americans having their world view of energy formed upon the basis of even more special interests and the media. With this winter being so cold for so long (and many more cold winters predicted to be in our future) even the most dedicated global warming advocate is beginning to doubt what they are being fed.
Beyond Nuclear, the Sierra Club, Green Peace, the Green Party, and other Global Warming advocates are among the most vocal of special interest groups. Their literature abounds of how many thousands and millions of people have died from nuclear energy and fossil fuels. Their literature however, conveniently leaves out how many millions of lives that cheap and affordable energy has saved.
The truth is almost all of the most affordable forms of energy, even coal, has provided a net benefit to longevity. Even in China, where some of the worst coal derived air pollution exists, the Chinese are living longer because energy has dynamically changed their lifestyle and eliminated many factors of morbidity.
Have anti-energy advocates ever taken the time to consider the hockey stick of life and prosperity that the industrial revolution created when they look at the hockey stick of global warming due to man-made pollution?
Do we have problems with our energy sources? Of course we do! But, we are getting better, and we are getting closer to finding final solutions to our problems with energy and pollution that will allow everyone to have more, much more, without dire consequences!
I tend to believe that thorium based energy and molten salt reactor technology are those solutions that we have sought and will help us get to where we all want to be!

The post Understanding Energy Hype and Energy Reality! appeared first on The Energy From Thorium Foundation.

Author: "Jon Morrow" Tags: "blog, Thorium, Uncategorized"
Comments Send by mail Print  Save  Delicious 
Date: Friday, 21 Mar 2014 17:30

china_flag

 

Commentary by Jon Morrow-

The South China Post reported on March 18th that the Chinese government has greatly accelerated its plans to produce a commercialized LFTR (Liquid Fluoride Thorium Reactor), which is a type of MSR Molten Salt Reactor. The previous goal set for the development of this reactor was within 25 years and that goal has now been reduced to just 10 years.

In the past, the development of a LFTR by China was due to a massive energy shortage in China. China’s energy shortage is the result of millions of Chinese living in the third world that are dreaming and reaching for a first world lifestyle (that a majority of many Americans and Europeans today enjoy).  The adoption of a very shrewd brand of American capitalism by the China government has allowed China the prosperity and wherewithal to pursue scientific endeavors such as the LFTR. These types of projects were previously reserved to capitalist countries like the United States, France, and Canada.

Unfortunately, the economy of America and many other countries has not allowed the pursuit of their own technologies due to their struggling economies. Many economist blame this upon a very expensive regulatory burden that has been imposed upon American companies. Business tend be be like water and tend to flow to countries that have the least costly regulatory burdens. This allows companies to be more competitive in a world with everything else being equal.

The reason given for the acceleration of the LFTR program by the China government is due to smog and air pollution brought on by the massive amount of manufacturing that has left America’s shores and other countries to set up business in China. Many out of work Americans in our struggling economy would like to have that problem. While China is exploiting its natural resources to produce prosperity for its citizens, America has adopted a policy of putting many of its natural resources off limits to protect the environment.

What is particularly ironic is that MSR technology was invented by America and Americans conceived the LFTR, but the same regulatory environment in America that has pushed American jobs overseas also prevents American companies from commercializing its own conceptual technology. A technology that could make many dirtier forms of energy naturally obsolete in a free market economy and give America a competitive edge.

China’s commercialization of LFTR would be a game changer that would allow an already very competitive China to have much more affordable energy and have a pollution free environment.

America’s energy policy is currently largely focused upon the development of renewables, and in particular, those renewable technologies that are not concentrated, base-load, or are power upon demand. Arguably, this means America has set its energy policy upon developing the most inefficient forms of renewable energy (wind and solar as compared to hydro or geothermal), which to economist (that are not scientifically biased and believe in the free-market system), means America is building energy expense and inefficiency into the foundation of its already struggling and un-competetive manufacturing arsenal.

China produces many of the solar panels and wind turbine generators (due to China’s near monopoly of rare earth elements used in their construction) used in America’s fleet of renewables, while China itself has gambled its present day prosperity and its future upon the development of nuclear technologies to provide safe, reliable, and clean energy.

Wind and solar in America struggle just to compete with coal and natural gas, LFTR is predicted to produce electricity at half that of natural gas and coal (and do so with less environmental harm to the planet than the large footprint of wind and solar) while producing no long-lived waste. Many Americans are used to living with Washington making bad energy policy decisions but, many cannot understand why we are aiding the Chinese in the development of commercializing MSR technology. To the layperson and even many experts this seems to be akin to shooting ourselves in our own foot. While America struggles to climb the ladder out of economic recession our legislators have adopted a policy of pursuing clean energy at any cost and a policy of assisting China at pursuing the development of clean and safe energy at an affordably competetive cost.

Shouldn’t we be pursuing clean, efficient, safe, and affordable energy?

Who are the winners in this current strategy?

The post The Molten Salt Reactor Race: Will America Join the Race? appeared first on The Energy From Thorium Foundation.

Author: "Jon Morrow" Tags: "blog, Blog-Related, Coal, Fossil Fuels, ..."
Comments Send by mail Print  Save  Delicious 
Date: Friday, 21 Mar 2014 15:24

nuclearyesplease3

-Story by Jon Morrow

Cleveland, Ohio- Radiophobia (fear of all forms of radiation) has plagued the nuclear industry since its inception but its rise to prominence hit a fever pitch after the Three Mile Island accident and the movie the China Syndrome was released. Today, we can see that Americans are not nearly as afraid of nuclear energy as they were in the 1970′s – even after an onslaught of miss-information being bandied about on many major websites and major media outlets- about the Fukushima Daiichi accident.

Many experts claimed Fukushima was the death nell of the nuclear industry.

But, according to a recent scientific public opinion poll of 800 Americans conducted for the Energy From Thorium Foundation, 3% of all Americans strongly like nuclear energy, 60% like nuclear energy, 7% dislike nuclear energy, and 30% strongly dislike nuclear energy. 63% of Americans have a positive view of nuclear energy and 37% have a negative view of nuclear energy. So, why is the media so disconnected from the public perception of nuclear energy? Do people trust their media sources anymore? It would seem not!

But a better question may be ”Why are the people that hate nuclear energy so passionate about hating nuclear energy and why are the people that like nuclear energy not passionate about it?” Is it because one set of demographics believes the media and the other set distrusts the media?

The results of the survey are somewhat confusing and so is anecdotal evidence that would seem to contradict the survey. Man on the street unscientific surveys seem to show a majority of Americans believe more people died from the Fukushima Daiichi accident than from the tidal wave that hit Japan. The reality is, and yes, not everything is accounted for with Fukushima, but as it stands right now there were no deaths at Fukushima due to radiation poisoning. The logical question is “If so many Americans believe that thousands of Japanese citizens have died from radiation exposure, why are they so positive on nuclear energy?”

Many will assume as we do that the American public believes that when America does nuclear, we do it right and we do it safely, and that other countries do not have the strict safety standards we have here in America. This may lead one to conclude as the Energy From Thorium Foundation does that the American public has a high degree of confidence in the professionals at the NRC (Nuclear Regulatory Commission) and that the majority of the public can ascertain a value in having nuclear energy.

While the media is very anti-nuclear and pro-renewable energy, additional polling shows an even greater disconnect with the media and the public. In another scientific poll of 1,000 Americans, 58% of Americans had a negative view of wind and solar and only 42% had a positive view of wind and solar. Of the 58% that held a negative view of wind and solar, 100% of the respondents cited reasons that they believed that these technologies were not economical. Of the reasons that the public supports wind and solar, only 47% agreed was because of the perceived benefits to the environment. 53% of the public that supports wind and solar does so not because of the technology but because they dislike coal and oil companies and want to break up and put out of business these perceived monopolies.

The poll demonstrates that the public is not that out of touch with the realities of our energy problems and shows that many industry professionals that predicted the end of the nuclear renaissance after Fukushima may of jumped the gun and over-estimated the power of the press.

The Energy From Thorium Foundations feels the results of this poll is encouraging and signals that those that advocate for nuclear technologies need to be more vocal and need to educate the public on mis-perceptions presented by the media.

To learn more about “safe nuclear” and its potential please visit the Energy From Thorium website or the Sustainable Abundance Center’s website.

The post Despite Fukushima and Media Bias, Americans Support Nuclear Energy! appeared first on The Energy From Thorium Foundation.

Author: "Jon Morrow" Tags: "blog, Blog-Related, Strategy, Thorium, U..."
Comments Send by mail Print  Save  Delicious 
Date: Tuesday, 11 Mar 2014 14:54
Author: "Jon Morrow" Tags: "blog, Conferences, Don Larson's Corner, ..."
Comments Send by mail Print  Save  Delicious 
Date: Tuesday, 11 Mar 2014 14:39
Author: "Jon Morrow" Tags: "Don Larson's Corner, Uncategorized"
Comments Send by mail Print  Save  Delicious 
Date: Friday, 20 Dec 2013 20:26
Ohio State Representative Terry Boose

Ohio State Representative Terry Boose

Ohio State Representative Andy Thompson

Ohio State Representative Andy Thompson

The EFTF (Energy From Thorium Foundation) would like to thank Ohio State House Reps Terry Boose and Andy Thompson for introducing a house resolution supporting the development of Thorium based MSRs (Molten Salt Reactors) in Ohio. If you would like to call or write their offices to show support:

Terry Boose

Phone (614) 466-9628

E-mail: rep57 [at] ohiohouse [dot] gov

 

Andrew Thompson

Phone (614) 644-8728

E-mail: rep95 [at] ohiohouse [dot] gov

 

read story here (link)

read story here (link)

read story here (link)

If you would like to educate other members of the Ohio State house about the potential economic and environmental benefits of supporting such a resolution, provided below are some of their contact information:

Ohio House Public Utilities Committee

Peter Stautberg (R)Chair Kristina Roegner (R)Vice Chair Sandra Williams (D)Ranking Minority
John Adams (R) Ron Amstutz (R) Mike Ashford (D)
Louis W. Blessing III (R) Kevin Boyce (D) Jim Butler (R)
Nicholas J. Celebrezze (D) Jack Cera (D) Margaret Conditt (R)
Mike Duffey (R) Anne Gonzales (R) Christina Hagan (R)
Sean O’Brien (D) Mark J. Romanchuk (R) Cliff Rosenberger (R)
Michael Stinziano (D) Fred Strahorn (D) Matt Szollosi (D)
Louis Terhar (R) Andy Thompson (R)

The Ohio House Technology, Labor, and Commerce Committee

Ron Young (R)Chair Mike Duffey (R)Vice Chair Robert F. Hagan (D)Ranking Minority
Nan A. Baker (R) Nick Barborak (D) Louis W. Blessing III (R)
Margaret Conditt (R) Anthony DeVitis (R) Ron Hood (R)
Al Landis (R) Matt Lundy (D) Zack Milkovich (D)
Dan Ramos (D)

The Ohio House Economic Development and Regulatory Reform Committee

 

Nan A. Baker (R)Chair Louis Terhar (R)Vice Chair Denise Driehaus (D)Ranking Minority
John Barnes, Jr. (D) Peter Beck (R) Heather Bishoff (D)
Tony Burkley (R) Michael F. Curtin (D) Christina Hagan (R)
Michael Henne (R) Ron Hood (R) Stephanie Kunze (R)
Sandra

Ohio House Manufacturing and Workforce Development Committee

 

Kirk Schuring (R)Chair Mark J. Romanchuk (R)Vice Chair Roland Winburn (D)Ranking Minority
Kevin Boyce (D) Timothy Derickson (R) Doug Green (R)
Cheryl L. Grossman (R) David Hall (R) Jay Hottinger (R)
Tom Letson (D) John Patterson (D) Kristina Roegner (R)

 

 The Ohio House Agricultural and Natural Resources Committee

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Ohio House Policy and Legislative Oversight Committee

 

Mike Dovilla (R)Chair Jim Buchy (R)Vice Chair Ronald V. Gerberry (D)Ranking Minority
John Adams (R) Louis W. Blessing III (R) Andrew Brenner (R)
Jack Cera (D) Kathleen Clyde (D) Michael F. Curtin (D)
Teresa Fedor (D) Matt Huffman (R) Dorothy Pelanda (R)
Rick Perales (R)

 

 

 

 

 

 

 

 

 

 

 

 

The post Boose and Thompson Sponsor Thorium Energy Resolution of Support! appeared first on The Energy From Thorium Foundation.

Author: "Jon Morrow" Tags: "blog, Blog-Related, Dr. Bill Thesling's ..."
Comments Send by mail Print  Save  Delicious 
Next page
» You can also retrieve older items : Read
» © All content and copyrights belong to their respective authors.«
» © FeedShow - Online RSS Feeds Reader